



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



### European Technical Assessment

### ETA-18/0617 of 15 February 2019

English translation prepared by DIBt - Original version in German language

#### **General Part**

| Technical Assessment Body issuing the                                                                              | Deutsches Institut für Bautechnik                                           |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| European Technical Assessment:                                                                                     |                                                                             |
| Trade name of the construction product                                                                             | Injection system ESSVE ONE or ESSVE ONE ICE                                 |
| Product family to which the construction product belongs                                                           | Bonded fastener for use in concrete                                         |
| Manufacturer                                                                                                       | ESSVE Produkter AB<br>Esbogatan 14<br>164 74 KISTA<br>SCHWEDEN              |
| Manufacturing plant                                                                                                | ESSVE Plant No. 671                                                         |
| This European Technical Assessment contains                                                                        | 25 pages including 3 annexes which form an integral part of this assessment |
| This European Technical Assessment is<br>issued in accordance with Regulation (EU)<br>No 305/2011, on the basis of | EAD 330499-00-0601                                                          |
| This version replaces                                                                                              | ETA-18/0617 issued on 12 July 2018                                          |



#### European Technical Assessment ETA-18/0617 English translation prepared by DIBt

Page 2 of 25 | 15 February 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 25 | 15 February 2019

#### Specific Part

#### 1 Technical description of the product

The "Injection system ESSVE ONE or ESSVE ONE ICE for concrete" is a bonded anchor consisting of a cartridge with injection mortar ESSVE ONE or ESSVE ONE ICE and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter  $\emptyset$ 8 to  $\emptyset$ 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                        | Performance             |
|---------------------------------------------------------------------------------|-------------------------|
| Characteristic resistance to tension load                                       | See Annex               |
| (static and quasi-static loading)                                               | C 1, C 2, C 4 and C 6   |
| Characteristic resistance to shear load                                         | See Annex               |
| (static and quasi-static loading)                                               | C 1, C 3, C 5 and C 7   |
| Displacements                                                                   | See Annex               |
| (static and quasi-static loading)                                               | C 8 to C 10             |
| Characteristic resistance for seismic performance                               | See Annex               |
| category C1                                                                     | C 2, C 3, C 6 and C 7   |
| Characteristic resistance and displacements for seismic performance category C2 | No performance assessed |

#### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |



Page 4 of 25 | 15 February 2019

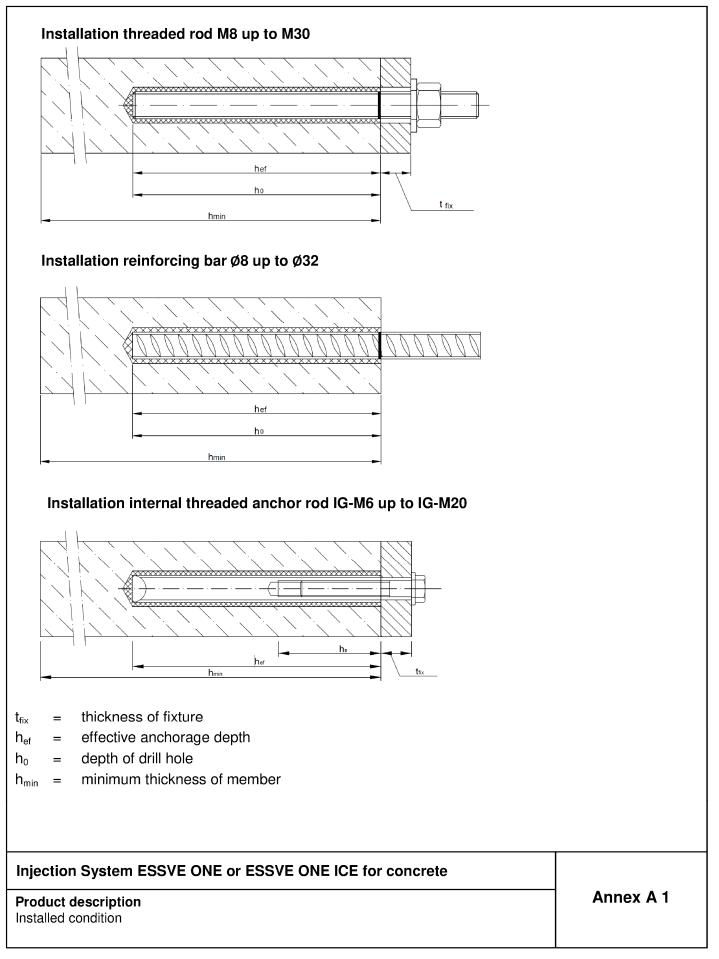
# European Technical Assessment ETA-18/0617

English translation prepared by DIBt

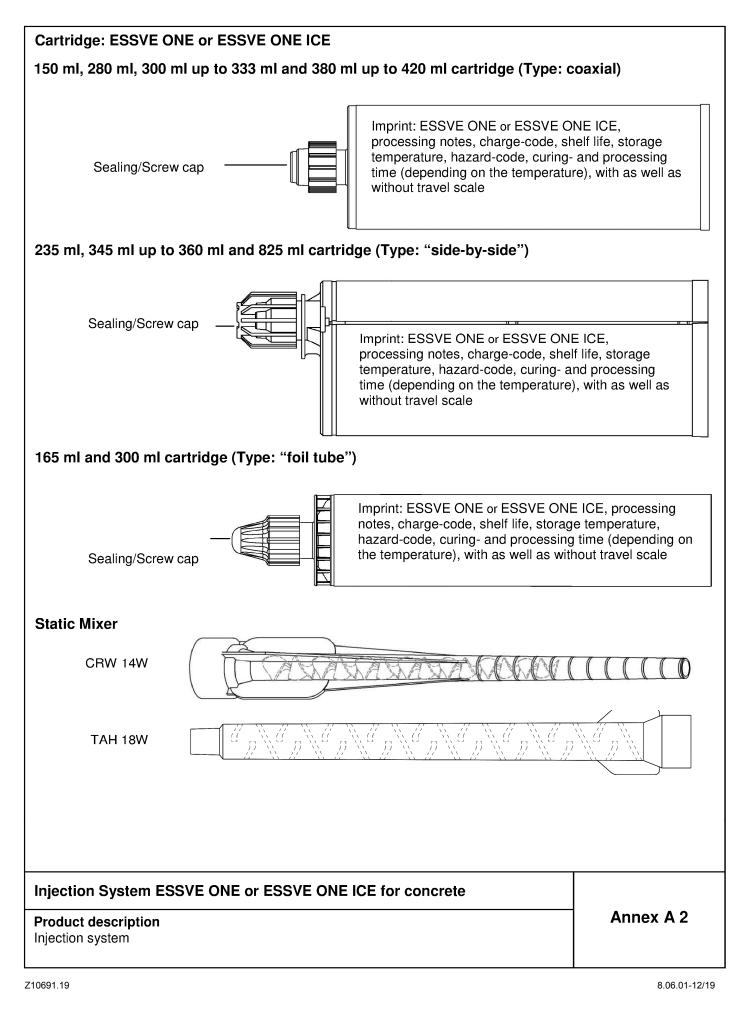
# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 15 February 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider











| Threaded rod M8, M10, M12, M16, M20                                                                         | , M24, M27, M30 with washer and hexagon nut                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                             | Commercial standard threaded<br>rod with:<br>- Materials, dimensions and<br>mechanical properties acc.<br>Table A1<br>- Inspection certificate 3.1 acc.<br>to EN 10204:2004<br>- Marking of embedment<br>depth                                 |
| Internal threaded anchor rod IG-M6, IC<br>Threaded rod or screw                                             | G-M8, IG-M10, IG-M12, IG-M16, IG-M20 Mark of the producer                                                                                                                                                                                      |
|                                                                                                             | Mark of the produce:<br>$h_{ef}$<br>Marking: e.g. $h_{ef}$<br>Marking Internal thread<br>Mark<br>Mark<br>M8 Thread size (Internal thread)<br>A4 additional mark for stainless steel<br>HCR additional mark for high-corrosion resistance steel |
| Filling washer and mixer reduction no fixture                                                               | zzle for filling the annular gap between anchor rod and                                                                                                                                                                                        |
| Injection System ESSVE ONE or ESSV<br>Product description<br>Threaded rod, internal threaded rod and fillin | Annex A 3                                                                                                                                                                                                                                      |



|          | ble A1: Materials                                                                                                               | Material                     |                      |                                                                                     |                                           |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|-------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| Stee     | I, zinc plated ( Steel acc. to EN 10                                                                                            |                              | :2001)               |                                                                                     |                                           |  |  |
|          | plated $\geq 5 \ \mu m$ acc. to EN ISO 4042.                                                                                    |                              |                      |                                                                                     | 9 and                                     |  |  |
|          | SO 10684:2004+AC:2009 or sherard                                                                                                |                              |                      |                                                                                     |                                           |  |  |
|          |                                                                                                                                 |                              | 4.6                  | f <sub>uk</sub> =400 N/mm <sup>2</sup> ; f <sub>yk</sub> =240 N/mm <sup>2</sup> ; A | $A_5 > 8\%$ fracture elongation           |  |  |
|          |                                                                                                                                 | Property class               | 4.8                  | f <sub>uk</sub> =400 N/mm <sup>2</sup> ; f <sub>yk</sub> =320 N/mm <sup>2</sup> ; A | $A_5 > 8\%$ fracture elongation           |  |  |
| 1        | 1 Anchor rod                                                                                                                    | acc. to                      | 5.6                  | f <sub>uk</sub> =500 N/mm <sup>2</sup> ; f <sub>yk</sub> =300 N/mm <sup>2</sup> ; A |                                           |  |  |
| •        |                                                                                                                                 | EN ISO 898-1:2013            | 5.8                  | f <sub>uk</sub> =500 N/mm <sup>2</sup> ; f <sub>yk</sub> =400 N/mm <sup>2</sup> ; A |                                           |  |  |
|          |                                                                                                                                 |                              | 8.8                  | f <sub>uk</sub> =800 N/mm <sup>2</sup> ; f <sub>yk</sub> =640 N/mm <sup>2</sup> ; A |                                           |  |  |
|          |                                                                                                                                 |                              |                      | for anchor rod class 4.6 or 4.8                                                     |                                           |  |  |
| 0        |                                                                                                                                 | Property class               | 4                    | for anchor rod class 5.6 or 5.8                                                     |                                           |  |  |
| 2        | Hexagon nut                                                                                                                     | acc. to<br>EN ISO 898-2:2012 | <u>5</u><br>8        |                                                                                     |                                           |  |  |
|          |                                                                                                                                 |                              | 8                    | for anchor rod class 8.8                                                            |                                           |  |  |
| 3a       | Washer,<br>(z.B.: EN ISO 887:2006, EN ISO 7089:2000,<br>EN ISO 7093:2000 oder EN ISO 7094:2000)                                 | Steel, zinc plated, hot-     | dip gal <sup>,</sup> | vanised or sherardized                                                              |                                           |  |  |
| 3b       | Filling washer                                                                                                                  |                              |                      | T                                                                                   |                                           |  |  |
|          |                                                                                                                                 | Property class               | 5.8                  | f <sub>uk</sub> =500 N/mm <sup>2</sup> ; f <sub>yk</sub> =400 N/mm <sup>2</sup>     | ; $A_5 > 8\%$ fracture elongatic          |  |  |
| 4        | Internal threaded anchor rod                                                                                                    | acc. to<br>EN ISO 898-1:2013 | 8.8                  | f <sub>uk</sub> =800 N/mm <sup>2</sup> ; f <sub>yk</sub> =640 N/mm <sup>2</sup>     | · A <sub>5</sub> > 8% fracture elongation |  |  |
| tair     | l<br>Iless steel A2 ( Material 1.4301 / 1.                                                                                      |                              |                      |                                                                                     |                                           |  |  |
| nd       |                                                                                                                                 | 4303 / 1.4307 / 1.4307       | ouer i               | .4541, acc. to EN 10088-1.201                                                       | +)                                        |  |  |
|          | lless steel A4 ( Material 1.4401 / 1                                                                                            | 4404 / 1.4571 / 1.4362       | or 1.4               | 578, acc. to EN 10088-1:2014)                                                       |                                           |  |  |
|          | , , , , , , , , , , , , , , , , , , ,                                                                                           | Property class               | 50                   | f <sub>uk</sub> =500 N/mm <sup>2</sup> ; f <sub>yk</sub> =210 N/mm <sup>2</sup> ; A | $\Lambda_5 > 8\%$ fracture elongation     |  |  |
| 1        | Anchor rod <sup>1)3)</sup>                                                                                                      | acc. to                      | 70                   | f <sub>uk</sub> =700 N/mm <sup>2</sup> ; f <sub>yk</sub> =450 N/mm <sup>2</sup> ; A | -                                         |  |  |
|          |                                                                                                                                 | EN ISO 3506-1:2009           | 80                   | f <sub>uk</sub> =800 N/mm <sup>2</sup> ; f <sub>yk</sub> =600 N/mm <sup>2</sup> ; A |                                           |  |  |
|          |                                                                                                                                 | Property class               | 50                   | for anchor rod class 50                                                             |                                           |  |  |
| 2        | Hexagon nut <sup>1)3)</sup>                                                                                                     | acc. to                      | 70                   | for anchor rod class 70                                                             |                                           |  |  |
|          |                                                                                                                                 | EN ISO 3506-1:2009           | 80                   | for anchor rod class 80                                                             |                                           |  |  |
|          | Washer,<br>(z.B.: EN ISO 887:2006, EN ISO 7089:2000,<br>EN ISO 7093:2000 oder EN ISO 7094:2000)<br>Filling washer <sup>4)</sup> |                              |                      | / 1.4307 / 1.4567 or 1.4541, EN<br>/ 1.4571 / 1.4362 or 1.4578, EN                  |                                           |  |  |
| 50       |                                                                                                                                 | Property class               | 50                   | £ 500 N//mm22 £ 010 N//mm22                                                         | • • • • • • • • • • • • • • • • • • •     |  |  |
| 4        | Internal threaded anchor rod <sup>1)2)</sup>                                                                                    | acc. to                      | 50                   | f <sub>uk</sub> =500 N/mm <sup>2</sup> ; f <sub>yk</sub> =210 N/mm <sup>2</sup>     | $A_5 > 8\%$ fracture elongation           |  |  |
|          |                                                                                                                                 | EN ISO 3506-1:2009           | 70                   | f <sub>uk</sub> =700 N/mm <sup>2</sup> ; f <sub>yk</sub> =450 N/mm <sup>2</sup>     | ; $A_5 > 8\%$ fracture elongatic          |  |  |
| ligh     | corrosion resistance steel ( Mate                                                                                               | rial 1.4529 or 1.4565, a     | acc. to              | EN 10088-1: 2014)                                                                   |                                           |  |  |
|          |                                                                                                                                 | Property class               | 50                   | f <sub>uk</sub> =500 N/mm <sup>2</sup> ; f <sub>yk</sub> =210 N/mm <sup>2</sup> ; A | $A_5 > 8\%$ fracture elongation           |  |  |
| 1        | Anchor rod <sup>1)</sup>                                                                                                        | acc. to                      | 70                   | f <sub>uk</sub> =700 N/mm <sup>2</sup> ; f <sub>yk</sub> =450 N/mm <sup>2</sup> ; A | $A_5 > 8\%$ fracture elongation           |  |  |
|          |                                                                                                                                 | EN ISO 3506-1:2009           | 80                   | f <sub>uk</sub> =800 N/mm <sup>2</sup> ; f <sub>yk</sub> =600 N/mm <sup>2</sup> ; A | $A_5 > 8\%$ fracture elongation           |  |  |
|          |                                                                                                                                 | Property class               | 50                   | for anchor rod class 50                                                             |                                           |  |  |
| 2        | Hexagon nut <sup>1)</sup>                                                                                                       | acc. to                      | 70                   | for anchor rod class 70                                                             |                                           |  |  |
|          |                                                                                                                                 | EN ISO 3506-1:2009           | 80                   | for anchor rod class 80                                                             |                                           |  |  |
| За       | Washer,<br>(z.B.: EN ISO 887:2006, EN ISO 7089:2000,<br>EN ISO 7093:2000 oder EN ISO 7094:2000)                                 | Material 1.4529 or 1.4       | 565, ac              | c. to EN 10088-1: 2014                                                              |                                           |  |  |
| 3b       | Filling washer                                                                                                                  | 1                            |                      |                                                                                     |                                           |  |  |
| 4        | Internal threaded anchor rod <sup>1) 2)</sup>                                                                                   | Property class acc. to       | 50                   | f <sub>uk</sub> =500 N/mm <sup>2</sup> ; f <sub>yk</sub> =210 N/mm <sup>2</sup>     |                                           |  |  |
|          |                                                                                                                                 | EN ISO 3506-1:2009           | 70                   | $f_{uk}=700 \text{ N/mm}^2$ ; $f_{yk}=450 \text{ N/mm}^2$                           | ; $A_5 > 8\%$ fracture elongatio          |  |  |
|          | Property class 70 for anchor rods up to N<br>for IG-M20 only property class 50<br>Property class 80 only for stainless steel    | A4                           | anchor               | rods up to IG-M16,                                                                  |                                           |  |  |
| 3)       | Filling washer only with stainless steel A                                                                                      |                              |                      |                                                                                     |                                           |  |  |
| 3)<br>4) |                                                                                                                                 |                              | <b>F</b> 4           |                                                                                     |                                           |  |  |
| 3)<br>4) | Filling washer only with stainless steel A<br>ection System ESSVE ONE                                                           |                              | E for                | concrete                                                                            |                                           |  |  |



| Reir     | nforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16                                                                        | 6, Ø 20, Ø 25, Ø 28, Ø 32                                                                                            |             |
|----------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------|
|          |                                                                                                                 |                                                                                                                      |             |
|          |                                                                                                                 |                                                                                                                      |             |
|          | h <sub>ef</sub>                                                                                                 | <b>\</b>                                                                                                             |             |
|          |                                                                                                                 |                                                                                                                      |             |
|          | • Minimum value of related rip area $f_{R,min}$ ac                                                              |                                                                                                                      |             |
|          | <ul> <li>Rib height of the bar shall be in the range<br/>(d: Nominal diameter of the bar; h: Rip hei</li> </ul> |                                                                                                                      |             |
|          |                                                                                                                 |                                                                                                                      |             |
|          |                                                                                                                 |                                                                                                                      |             |
| <b>.</b> | La AQUINAL MALA                                                                                                 |                                                                                                                      |             |
|          | le A2: Materials                                                                                                | 1                                                                                                                    |             |
| Part     |                                                                                                                 | Material                                                                                                             |             |
| Reinf    | iorcing bars                                                                                                    | 1                                                                                                                    |             |
| 1        | Rebar<br>EN 1992-1-1:2004+AC:2010, Annex C                                                                      | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$ | 1992-1-1/NA |
|          |                                                                                                                 |                                                                                                                      |             |
|          |                                                                                                                 |                                                                                                                      |             |
|          |                                                                                                                 |                                                                                                                      |             |
|          |                                                                                                                 |                                                                                                                      |             |
|          |                                                                                                                 |                                                                                                                      |             |
|          |                                                                                                                 |                                                                                                                      |             |
| Inje     | ction System ESSVE ONE or ESSVE O                                                                               | NE ICE for concrete                                                                                                  |             |
| Proc     | duct description<br>erials reinforcing bar                                                                      |                                                                                                                      | Annex A 5   |



### Specifications of intended use

#### Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

#### **Base materials:**

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

#### **Temperature Range:**

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
   particular aggressive conditions exist
  - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055

#### Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

#### Injection System ESSVE ONE or ESSVE ONE ICE for concrete

Intended Use Specifications Annex B 1



| Anchor size                                                                                                                                                                                                        |                       |                                                                                  |                     | M 8                    | M                                    | 10                  | M 12           | M        | 16         | М 20        | M 2                    | 24                     | M 27              | M 30              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------|---------------------|------------------------|--------------------------------------|---------------------|----------------|----------|------------|-------------|------------------------|------------------------|-------------------|-------------------|
| Outer diameter of anchor                                                                                                                                                                                           |                       | d <sub>nom</sub> [mm]                                                            | ] =                 | 8                      | 1                                    | 0                   | 12             | 1        | 16         | 20          | 24                     | ł                      | 27                | 30                |
| Nominal drill hole diameter                                                                                                                                                                                        |                       | d <sub>0</sub> [mm]                                                              | ] =                 | 10                     | 1                                    | 2                   | 14             | 1        | 18         | 24          | 28                     | 3                      | 32                | 35                |
| Effective embedment denth                                                                                                                                                                                          |                       | h <sub>ef,min</sub> [mm]                                                         | ] =                 | 60                     | 6                                    | 0                   | 70             | 8        | 30         | 90          | 96                     | 3                      | 108               | 120               |
| Effective embedment depth                                                                                                                                                                                          |                       | h <sub>ef,max</sub> [mm]                                                         | ] =                 | 160                    | 20                                   | 0                   | 240            | 3        | 20         | 400         | 48                     | 0                      | 540               | 600               |
| Diameter of clearance hole in the fixture                                                                                                                                                                          |                       | d <sub>f</sub> [mm]                                                              | ]≤                  | 9                      | 1                                    | 2                   | 14             | 1        | 18         | 22          | 26                     | 6                      | 30                | 33                |
| Diameter of steel brush                                                                                                                                                                                            |                       | d <sub>b</sub> [mm]                                                              | ]≥                  | 12                     | 1                                    | 4                   | 16             | 2        | 20         | 26          | 30                     | )                      | 34                | 37                |
| Maximum torque moment                                                                                                                                                                                              |                       | T <sub>inst</sub> [Nm]                                                           | ]≤                  | 10                     | 2                                    | 0                   | 40             | 8        | 30         | 120         | 16                     | 0                      | 180               | 200               |
| Minimum thickness of memb                                                                                                                                                                                          | er                    | h <sub>min</sub> [m                                                              | m]                  | h <sub>ef</sub> +      | 30 mm                                | $1 \ge 100$         | ) mm           |          |            | r           | ۱ <sub>ef</sub> +      | 2d <sub>0</sub>        |                   | ·                 |
| Minimum spacing                                                                                                                                                                                                    |                       | s <sub>min</sub> [m                                                              | m]                  | 40                     | 5                                    | 0                   | 60             | 8        | 30         | 100         | 12                     | 0                      | 135               | 150               |
| Minimum edge distance                                                                                                                                                                                              |                       | c <sub>min</sub> [m                                                              | m]                  | 40                     | 5                                    | 0                   | 60             | 8        | 30         | 100         | 12                     | 0                      | 135               | 150               |
| Outer diameter of anchor                                                                                                                                                                                           |                       | <sub>om</sub> [mm] =                                                             | Ø                   | 3                      | Ø <b>10</b><br>10                    | Ø 12<br>12          | 14             | ŀ        | Ø 16<br>16 | Ø 20<br>20  | 2                      | <b>25</b><br>25        | Ø <b>28</b><br>28 | Ø <b>32</b><br>32 |
| Table B2: Installation                                                                                                                                                                                             |                       |                                                                                  |                     |                        |                                      |                     |                |          |            |             |                        |                        |                   |                   |
| Outer diameter of anchor                                                                                                                                                                                           | dn                    | <sub>om</sub> [mm] =                                                             | 6                   | 3                      | 10                                   | 12                  | 14             | L I      | 16         | 20          | 2                      | 25                     | 28                | 32                |
| Nominal drill hole diameter                                                                                                                                                                                        |                       | $d_0 [mm] =$                                                                     | 1                   | 2                      | 14                                   | 16                  | 18             | 3        | 20         | 24          |                        | 32                     | 35                | 40                |
|                                                                                                                                                                                                                    | h <sub>ef.r</sub>     | <sub>min</sub> [mm] =                                                            | 6                   | 0                      | 60                                   | 70                  | 75             | 5        | 80         | 90          | 1                      | 00                     | 112               | 128               |
| Effective embedment depth                                                                                                                                                                                          |                       | <sub>nax</sub> [mm] =                                                            | 16                  | 60                     | 200                                  | 240                 | 28             | 0        | 320        | 400         | 5                      | 00                     | 580               | 640               |
| Diameter of steel brush                                                                                                                                                                                            |                       | d <sub>⊳</sub> [mm] ≥                                                            | 1                   | 4                      | 16                                   | 18                  | 20             | )        | 22         | 26          | 3                      | 34                     | 37                | 41,5              |
| Minimum thickness of<br>member                                                                                                                                                                                     |                       | h <sub>min</sub> [mm]                                                            | h <sub>e</sub><br>≥ | f + 30<br>100 i        | mm h <sub>ef</sub> + 2d <sub>0</sub> |                     |                |          |            |             |                        |                        |                   |                   |
| Minimum spacing                                                                                                                                                                                                    |                       | s <sub>min</sub> [mm]                                                            | 4                   | 0                      | 50                                   | 60                  | 70             | )        | 80         | 100         | 1                      | 25                     | 140               | 160               |
| Minimum edge distance                                                                                                                                                                                              |                       | c <sub>min</sub> [mm]                                                            | 4                   | 0                      | 50                                   | 60                  | 70             | )        | 80         | 100         | 1                      | 25                     | 140               | 160               |
| Table B3: Installation                                                                                                                                                                                             | on pa                 | rameters                                                                         | s fo                | r int                  | ernal                                | threa               | aded           | and      | chor r     | od          |                        |                        |                   |                   |
| Size internal threaded anchor                                                                                                                                                                                      | rod                   |                                                                                  |                     |                        | G-M 6                                | IG                  | -M 8           | IG       | -M 10      | IG-M 1      | 12                     | IG-N                   | 1 16              | G-M 20            |
| Internal diameter of anchor                                                                                                                                                                                        |                       | d <sub>2</sub> [                                                                 | mm                  | ] =                    | 6                                    |                     | 8              |          | 10         | 12          |                        | 1                      | 6                 | 20                |
| Outer diameter of anchor <sup>1)</sup>                                                                                                                                                                             |                       | d <sub>nom</sub> [                                                               | mm                  | ] =                    | 10                                   |                     | 12             |          | 16         | 20          |                        | 2                      | 4                 | 30                |
| Nominal drill hole diameter                                                                                                                                                                                        |                       | d <sub>0</sub> [                                                                 | mm                  | ] =                    | 12                                   |                     | 14             |          | 18         | 22          |                        | 2                      |                   | 35                |
|                                                                                                                                                                                                                    |                       | h <sub>ef,min</sub> [                                                            |                     |                        | 60                                   | _                   | 70             | <u> </u> | 80         | 90          |                        | 9                      |                   | 120               |
| Filective embedment depth                                                                                                                                                                                          |                       | h <sub>ef,max</sub> [I                                                           | mm                  | ] =                    | 200                                  | 2                   | 40             |          | 320        | 400         |                        | 48                     | 30                | 600               |
| •                                                                                                                                                                                                                  | Diameter of clearance |                                                                                  |                     |                        |                                      |                     | 9              |          | 12         | 14          |                        | 18                     |                   | 22                |
| Diameter of clearance<br>hole in the fixture                                                                                                                                                                       |                       |                                                                                  | mm                  |                        | 7                                    |                     |                |          |            |             |                        |                        |                   |                   |
| Diameter of clearance<br>hole in the fixture<br>Maximum torque moment                                                                                                                                              |                       | d <sub>f</sub> [<br>T <sub>inst</sub> [                                          |                     |                        | 7<br>10                              |                     | 9<br>10        |          | 20         | 40          |                        | 6                      | 0                 | 100               |
| Diameter of clearance<br>hole in the fixture<br>Maximum torque moment<br>Thread engagement length                                                                                                                  |                       | T <sub>inst</sub> [                                                              |                     | ]≤                     | 10<br>8/20                           | 8                   | 10<br>/20      |          | 20<br>0/25 | 40<br>12/30 | )                      | 6<br>16/               |                   | 100<br>20/40      |
| Diameter of clearance<br>hole in the fixture<br>Maximum torque moment<br>Thread engagement length<br>min/max<br>Minimum thickness of memb                                                                          | er                    | T <sub>inst</sub> [                                                              | Nm                  | ] <u>&lt;</u><br>] =   | 10<br>8/20<br>h <sub>ef</sub> +      |                     | 10<br>/20<br>n |          |            | 12/30       | )<br>I <sub>ef</sub> + | 16/<br>2d <sub>0</sub> | /32               |                   |
| Effective embedment depth<br>Diameter of clearance<br>hole in the fixture<br>Maximum torque moment<br>Thread engagement length<br>min/max<br>Minimum thickness of memb<br>Minimum spacing<br>Minimum edge distance | er                    | T <sub>inst</sub> [<br>I <sub>IG</sub> [<br>h <sub>min</sub><br>S <sub>min</sub> | Nm<br>mm            | ] ≤<br>] =<br>m]<br>m] | 10<br>8/20<br>h <sub>ef</sub> +      | 8<br>30 mi<br>00 mm | 10<br>/20<br>n | 1        |            | 12/30       | l <sub>ef</sub> +      | 16/                    | 20                |                   |

#### Injection System ESSVE ONE or ESSVE ONE ICE for concrete

Intended Use

Annex B 2

Installation parameters



|                                                                                           |                                                                                                                                 |                                                    | 8                                  |                | 999999999999           |                                         |                |                                              |                   |     |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------|----------------|------------------------|-----------------------------------------|----------------|----------------------------------------------|-------------------|-----|--|--|
| Threaded<br>Rod                                                                           | Rebar                                                                                                                           | Internal<br>threaded<br>Anchor rod                 | d₀<br>Drill bit - Ø<br>HD, HDB, CA | Ibit-Ø Brush-Ø |                        | d <sub>b,min</sub><br>min.<br>Brush - Ø | Piston<br>plug | Installation direction and us of piston plug |                   |     |  |  |
| [mm]                                                                                      | [mm]                                                                                                                            | [mm]                                               | [mm]                               |                | [mm]                   | [mm]                                    |                | Ļ                                            | $\rightarrow$     |     |  |  |
| M8                                                                                        |                                                                                                                                 |                                                    | 10                                 | RBT10          | 12                     | 10,5                                    |                | •                                            |                   |     |  |  |
| M10                                                                                       | 8                                                                                                                               | IG-M6                                              | 12                                 | RBT12          | 14                     | 12,5                                    |                | No pieton r                                  | olug require      | d   |  |  |
| M12                                                                                       | 10                                                                                                                              | IG-M8                                              | 14                                 | RBT14          |                        | 14,5                                    |                | πο μιστοπ μ                                  | nug require       | u   |  |  |
|                                                                                           | 12                                                                                                                              |                                                    | 16                                 | RBT16          | 18                     | 16,5                                    |                |                                              |                   |     |  |  |
| M16                                                                                       | 14                                                                                                                              | IG-M10                                             | 18                                 | RBT18          | 20                     | 18,5                                    | VS18           |                                              |                   |     |  |  |
|                                                                                           | 16                                                                                                                              |                                                    | 20                                 | RBT20          | 22                     | 20,5                                    | VS20           |                                              |                   |     |  |  |
| M20                                                                                       | 20                                                                                                                              | IG-M12                                             | 24                                 | RBT24          |                        | 24,5                                    | VS24           | h <sub>ef</sub> >                            | h <sub>ef</sub> > |     |  |  |
| M24                                                                                       |                                                                                                                                 | IG-M16                                             | 28                                 | RBT28          |                        | 28,5                                    | VS28           | 250 mm                                       | 250 mm            | all |  |  |
| M27                                                                                       | 25                                                                                                                              |                                                    | 32                                 | RBT32          | 34                     | 32,5                                    | VS32           | 250 mm                                       | 250 mm            |     |  |  |
|                                                                                           |                                                                                                                                 |                                                    |                                    | DDTOC          |                        |                                         |                | -                                            |                   |     |  |  |
| M30                                                                                       | 28                                                                                                                              | IG-M20                                             | 35                                 | RBT35          | 37                     | 35,5                                    | VS35           |                                              |                   |     |  |  |
|                                                                                           |                                                                                                                                 | IG-M20                                             | 35<br>40                           | RBT40          |                        | 40,5                                    | VS35<br>VS40   | -                                            |                   |     |  |  |
|                                                                                           | 28                                                                                                                              | IG-M20                                             |                                    |                |                        |                                         |                | -                                            |                   |     |  |  |
| M30<br>MAC - Ha<br>Drill bit dia<br>Drill hole c                                          | 28<br>32                                                                                                                        | (volume 75<br>10 mm to 20<br>< 10 d <sub>nom</sub> | 40                                 |                | 41,5                   |                                         | VS40           |                                              | (min 6 bar        | )   |  |  |
| M30<br>MAC - Ha<br>Drill bit dia<br>Drill hole c                                          | 28<br>32<br>and pump<br>ameter (d <sub>0</sub> ):<br>depth (h <sub>0</sub> ): <                                                 | (volume 75<br>10 mm to 20<br>< 10 d <sub>nom</sub> | 40                                 |                | 41,5                   | 40,5                                    | VS40           |                                              | (min 6 bar        | ()  |  |  |
| M30<br>MAC - Ha<br>Drill bit dia<br>Drill hole of<br>Only in no<br>Piston p<br>installati | 28<br>32<br>and pump<br>ameter (d <sub>0</sub> ):<br>depth (h <sub>0</sub> ): <<br>n-cracked of<br>n-cracked of<br>lug for over | (volume 75<br>10 mm to 20<br>< 10 d <sub>nom</sub> | 40                                 |                | 41,5<br>CAC<br>Drill t | 40,5                                    | vS40           | ameters                                      | (min 6 bar        | ()  |  |  |



| Drilling of the bore      | hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                           | 1 Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hammor compressed air (CD) drilling. The use of a hollow drill bit is only sufficient vacuum permitted. In case of aborted drill hole: The drill hole shall be filled with mort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ner (HD), hollow (HDB)<br>y in combination with a |
|                           | Attention! Standing water in the bore hole must be removed bef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ore cleaning.                                     |
| MAC: Cleaning for         | bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cracked concrete only!                            |
| 4x                        | <ul> <li>2a. Starting from the bottom or back of the bore hole, blow the hole c<br/>(Annex B 3) a minimum of four times.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lean by a hand pump <sup>1)</sup>                 |
| <b>*********</b> ***      | <ul> <li>Check brush diameter (Table B4). Brush the hole with an appropriate of the second secon</li></ul> |                                                   |
|                           | 2c. Finally blow the hole clean again with a hand pump (Annex B 3) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a minimum of four times.                          |
| 4x                        | <sup>1)</sup> It is permitted to blow bore holes with diameter between 14 mm and 20 mm up to 10d <sub>nom</sub> also in cracked concrete with hand-pump.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and an embedment depth                            |
| CAC: Cleaning for a       | all bore hole diameter in uncracked and cracked concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |
| 4x                        | 2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of four times stream is free of noticeable dust. If the bore hole ground is not re-extension must be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | until return air                                  |
| <u>********</u> ***<br>4x | <ul> <li>2b. Check brush diameter (Table B4). Brush the hole with an appropriate of the second s</li></ul> |                                                   |
| 4x                        | 2c. Finally blow the hole clean again with compressed air (min. 6 bar minimum of four times until return air stream is free of noticeable ground is not reached an extension must be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
|                           | After cleaning, the bore hole has to be protected against re-ca<br>an appropriate way, until dispensing the mortar in the bore ho<br>the cleaning has to be repeated directly before dispensing the<br>In-flowing water must not contaminate the bore hole again.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ole. If necessary,                                |
| Injection System          | ESSVE ONE or ESSVE ONE ICE for concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
| Intended Use              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Annex B 4                                         |



| Installation inst     | ructions (continuation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       | 3. Attach the supplied static-mixing nozzle to the cartridge and load th correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
|                       | 4. Prior to inserting the anchor rod into the filled bore hole, the positio depth shall be marked on the anchor rods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n of the embedment                                  |
| min. 3 full<br>stroke | 5 Prior to dispensing into the anchor hole, squeeze out separately a r<br>strokes and discard non-uniformly mixed adhesive components unt<br>consistent grey colour. For foil tube cartridges it must be discarded<br>strokes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | il the mortar shows a                               |
|                       | 6 Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static r hole fills to avoid creating air pockets. If the bottom or back of the a reached, an appropriate extension nozzle must be used. Observe the given in Annex B 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nixing nozzle as the nchor hole is not              |
|                       | <ul> <li>Piston plugs and mixer nozzle extensions shall be used according t following applications:</li> <li>Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h<sub>ef</sub> &gt; 2</li> <li>Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (vertical downwards<br>50mm                         |
|                       | 8. Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|                       | The anchor shall be free of dirt, grease, oil or other foreign material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
|                       | 9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fixed applied applied application the anchor rod shall be fixed applied | ned, the application has                            |
| +20°C                 | 10. Allow the adhesive to cure to the specified time prior to applying ar not move or load the anchor until it is fully cured (attend Annex B 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
|                       | 11. After full curing, the add-on part can be installed with up to the max<br>(Table B1 or B3) by using a calibrated torque wrench. It can be opt<br>gap between anchor and fixture with mortar. Therefor substitute the<br>washer and connect the mixer reduction nozzle to the tip of the mix<br>filled with mortar, when mortar oozes out of the washer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ional filled the annular<br>e washer by the filling |
| Injection System      | ESSVE ONE or ESSVE ONE ICE for concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| Intended Use          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Annex B 5                                           |

Installation instructions (continuation)



| Concrete temperature                              | Gelling- / working time    | Minimum curing time<br>in dry concrete <sup>1)</sup> |
|---------------------------------------------------|----------------------------|------------------------------------------------------|
| 0 °C to +4°C                                      | 45 min                     | 7 h                                                  |
| +5 °C to +9°C                                     | 25 min                     | 2 h                                                  |
| + 10 °C to +19°C                                  | 15 min                     | 80 min                                               |
| - 20 °C to +29°C                                  | 6 min                      | 45 min                                               |
| - 30 °C to +34°C                                  | 4 min                      | 25 min                                               |
| + 35 °C to +39°C                                  | 2 min                      | 20 min                                               |
| + 40 °C                                           | 1,5 min                    | 15 min                                               |
| Cartridge temperature                             | +5°C to                    | +40°C                                                |
| Concrete temperature                              | Gelling- / working time    | Minimum curing time<br>in dry concrete <sup>1)</sup> |
|                                                   | 10                         |                                                      |
| 0 °C to +4°C                                      | 10 min                     | 2,5 h                                                |
| +5 °C to +9°C                                     | 6 min                      | 80 Min                                               |
| +5 °C to +9°C<br>+ 10 °C                          | 6 min<br>6 min             | 80 Min<br>60 Min                                     |
| +5 °C to +9°C<br>+ 10 °C<br>Cartridge temperature | 6 min<br>6 min<br>0°C to - | 80 Min<br>60 Min                                     |
| +5 °C to +9°C<br>+ 10 °C                          | 6 min<br>6 min<br>0°C to - | 80 Min<br>60 Min                                     |



#### Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods Size M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30 Cross section area [mm<sup>2</sup>] 36,6 58 84,3 157 245 353 459 561 $A_s$ Characteristic tension resistance, Steel failure 1) Steel, Property class 4.6 and 4.8 $N_{\mathsf{R}\mathsf{k},\mathsf{s}}$ [kN] 15 (13) 23 (21) 34 63 98 141 184 224 Steel, Property class 5.6 and 5.8 $N_{Rk,s}$ [kN] 18 (17) 29 (27) 42 78 122 176 230 280 Steel, Property class 8.8 29 (27) 46 (43) $N_{\mathsf{Rk},\mathsf{s}}$ [kN] 67 125 196 282 368 449 Stainless steel A2, A4 and HCR, Property class 50 N<sub>Rk,s</sub> 29 42 79 123 177 230 281 [kN] 18 N<sub>Rk,s</sub> Stainless steel A2, A4 and HCR, Property class 70 [kN] 26 41 59 110 171 247 $N_{\mathsf{R}\mathsf{k},\mathsf{s}}$ Stainless steel A4 and HCR, Property class 80 [kN] 29 46 67 126 196 282 --Characteristic tension resistance, Partial factor<sup>2)</sup> Steel, Property class 4.6 2,0 [-] γMs.V Steel, Property class 4.8 1,5 [-] γMs.V Steel, Property class 5.6 [-] 2.0 γMs,V Steel, Property class 5.8 [-] 1,5 γMs.V Steel, Property class 8.8 [-] 1,5 γMs,V Stainless steel A2, A4 and HCR, Property class 50 [-] 2.86 γMs.V Stainless steel A2, A4 and HCR, Property class 70 [-] 1.87 γMs,V Stainless steel A4 and HCR, Property class 80 γMs,V [-] 1.6 Characteristic shear resistance, Steel failure 1) V<sup>0</sup><sub>Rk,s</sub> Steel, Property class 4.6 and 4.8 [kN] 9 (8) 14 (13) 20 38 59 85 110 135 arm Steel, Property class 5.6 and 5.8 V<sup>0</sup><sub>Rk,s</sub> 15 (13) 39 140 [kN] 9 (8) 21 61 88 115 lever Steel, Property class 8.8 V<sup>0</sup><sub>Rk,s</sub> [kN] 15 (13) 23 (21) 34 63 98 141 184 224 Stainless steel A2, A4 and HCR, Property class 50 $V^0_{Rk,s}$ [kN] 9 15 21 39 61 88 115 140 Without V<sup>0</sup><sub>Rk,s</sub> Stainless steel A2, A4 and HCR, Property class 70 [kN] 13 20 30 55 86 124 \_ -15 Stainless steel A4 and HCR, Property class 80 $V^{0}_{Rk,s}$ [kN] 23 34 63 98 141 -Steel, Property class 4.6 and 4.8 M<sup>0</sup><sub>Rk,s</sub> 15 (13) 30 (27) 52 133 260 449 666 900 [Nm] Steel, Property class 5.6 and 5.8 M<sup>0</sup><sub>Rk,s</sub> 19 (16) 37 (33) 324 1123 [Nm] 65 166 560 833 arm M<sup>0</sup><sub>Rk,s</sub> 105 519 896 1797 Steel, Property class 8.8 [Nm] 30 (26) 60 (53) 266 1333 lever Stainless steel A2, A4 and HCR, Property class 50 M<sup>0</sup><sub>Rk,s</sub> [Nm] 19 37 66 167 325 561 832 1125 With Stainless steel A2, A4 and HCR, Property class 70 M<sup>0</sup><sub>Rk.s</sub> [Nm] 26 52 92 232 454 784 \_ -Stainless steel A4 and HCR, Property class 80 M<sup>0</sup><sub>Rk,s</sub> 30 59 105 266 519 896 [Nm] --Characteristic shear resistance, Partial factor 2) Steel, Property class 4.6 1,67 γMs,V [-] Steel, Property class 4.8 [-] 1.25 γMs,V Steel, Property class 5.6 1,67 [-] γMs.V Steel, Property class 5.8 [-] 1,25 γMs.V Steel, Property class 8.8 [-] 1,25 γMs,V Stainless steel A2, A4 and HCR, Property class 50 2,38 [-] γMs,V Stainless steel A2, A4 and HCR, Property class 70 [-] 1,56 γMs,V Stainless steel A4 and HCR, Property class 80 1,33 [-] γMs.V

<sup>1)</sup> Values are only valid for the given stress area A<sub>s</sub>. Values in brackets are valid for undersized threaded rods with smaller stress area A<sub>s</sub> for hotdip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

<sup>2)</sup> in absence of national regulation

#### Injection System ESSVE ONE or ESSVE ONE ICE for concrete

#### Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1



| Anchor size threaded                 | rod                                       |                                            |                                              | M 8        | M 10       | M 12             | M 16                      | M 20                              | M24       | M27             | M30                                           |
|--------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------------|------------|------------|------------------|---------------------------|-----------------------------------|-----------|-----------------|-----------------------------------------------|
| Steel failure                        |                                           | I                                          |                                              |            |            |                  |                           |                                   |           |                 |                                               |
| Characteristic tension re            | esistance                                 | N <sub>Rk,s</sub>                          | [kN]                                         |            |            | A <sub>s</sub> • | f <sub>uk</sub> (or se    |                                   | C1)       |                 |                                               |
|                                      |                                           | N <sub>Rk,s, eq</sub>                      | [kN]                                         |            |            |                  | 1,0 •                     |                                   |           |                 |                                               |
| Partial factor                       |                                           | γms,N                                      | [-]                                          |            |            |                  | see Ta                    | ble C1                            |           |                 |                                               |
| Combined pull-out and                |                                           |                                            |                                              |            |            |                  |                           |                                   |           |                 |                                               |
| Characteristic bond resi             | stance in non-cracked co                  | ncrete C20/25                              |                                              |            |            |                  |                           |                                   | 1         | 1               | 1                                             |
| Temperature range I:<br>40°C/24°C    | dry and wet concrete                      | $	au_{Rk,ucr}$                             | [N/mm <sup>2</sup> ]                         | 10         | 12         | 12               | 12                        | 12                                | 11        | 10              | 9                                             |
|                                      | flooded bore hole                         | τ <sub>Rk,ucr</sub>                        | [N/mm <sup>2</sup> ]                         | 7,5        | 8,5<br>9   | 8,5<br>9         | 8,5                       | No Per<br>9                       |           | Assessed        | <u>,                                     </u> |
| Temperature range II:<br>30°C/50°C   | dry and wet concrete<br>flooded bore hole | τ <sub>Rk,ucr</sub>                        | [N/mm <sup>2</sup> ]<br>[N/mm <sup>2</sup> ] | 7,5<br>5,5 | 9<br>6,5   | 9<br>6,5         | 9<br>6,5                  | -                                 | 8,5       | 7,5<br>Assessed | 6,5                                           |
| Temperature range III:               | dry and wet concrete                      | τ <sub>Rk,ucr</sub>                        | [N/mm <sup>2</sup> ]                         | 5,5        | 6,5        | 6,5              | 6,5                       | 6,5                               | 6,5       | 5,5             | 5.0                                           |
| 120°C/72°C                           | flooded bore hole                         | τ <sub>Rk,ucr</sub><br>τ <sub>Rk,ucr</sub> | [N/mm <sup>2</sup> ]                         | 4.0        | 5,0        | 5.0              | 5,0                       | ,                                 |           | Assessed        |                                               |
| Characteristic bond resi             | stance in cracked concre                  | ,                                          | []                                           | .,0        | 0,0        | 0,0              | 0,0                       |                                   |           |                 | . (                                           |
|                                      |                                           | τ <sub>Rk,cr</sub>                         | [N/mm <sup>2</sup> ]                         | 4,0        | 5,0        | 5,5              | 5,5                       | 5,5                               | 5,5       | 6,5             | 6,5                                           |
| Temperature range I:                 | dry and wet concrete                      | τ <sub>Rk,eq</sub>                         | [N/mm <sup>2</sup> ]                         | 2,5        | 3,1        | 3,7              | 3,7                       | 3,7                               | 3,8       | 4,5             | 4.5                                           |
| 40°C/24°C                            |                                           | τ <sub>Rk,cr</sub>                         | [N/mm <sup>2</sup> ]                         | 4,0        | 4,0        | 5,5              | 5,5                       | · · ·                             |           | Assessed        | (NPA)                                         |
|                                      | flooded bore hole                         | $\tau_{\rm Rk,eq}$                         | [N/mm <sup>2</sup> ]                         | 2,5        | 2,5        | 3,7              | 3,7                       | No Per                            | rformance | Assessed        | (NPA                                          |
|                                      | dry and wat concrete                      | $\tau_{\rm Rk,cr}$                         | [N/mm <sup>2</sup> ]                         | 2,5        | 3,5        | 4,0              | 4,0                       | 4,0                               | 4,0       | 4,5             | 4,5                                           |
| Temperature range II:                | dry and wet concrete                      | $	au_{Rk,eq}$                              | [N/mm <sup>2</sup> ]                         | 1,6        | 2,2        | 2,7              | 2,7                       | 2,7                               | 2,8       | 3,1             | 3,1                                           |
| 30°C/50°C                            | flooded bore hole                         | $\tau_{\text{Rk,cr}}$                      | [N/mm <sup>2</sup> ]                         | 2,5        | 3,0        | 4,0              | 4,0                       | No Per                            | rformance | Assessed        | (NPA)                                         |
|                                      |                                           | $	au_{Rk,eq}$                              | [N/mm <sup>2</sup> ]                         | 1,6        | 1,9        | 2,7              | 2,7                       |                                   |           | Assessed        | r`                                            |
|                                      | dry and wet concrete                      | $\tau_{\rm Rk,cr}$                         | [N/mm <sup>2</sup> ]                         | 2,0        | 2,5        | 3,0              | 3,0                       | 3,0                               | 3,0       | 3,5             | 3,5                                           |
| Temperature range III:<br>120°C/72°C | -                                         | $	au_{Rk,eq}$                              | [N/mm <sup>2</sup> ]                         | 1,3        | 1,6        | 2,0              | 2,0                       | 2,0                               | 2,1       | 2,4             | 2,4                                           |
| 12010/1210                           | flooded bore hole                         | τ <sub>Rk,cr</sub>                         | [N/mm <sup>2</sup> ]                         | 2,0<br>1,3 | 2,5<br>1,6 | 3,0              | 3,0<br>2,0                |                                   |           | Assessed        |                                               |
|                                      |                                           | τ <sub>Rk,eq</sub><br>C25/3                | [N/mm <sup>2</sup> ]                         | 1,3        | 1,0        | 2,0              | <u>2,0</u><br>1,(         |                                   | normance  | Assessed        | (INPA)                                        |
|                                      |                                           | C23/3                                      |                                              |            |            |                  | 1,0                       |                                   |           |                 |                                               |
| ncreasing factors for co             |                                           | C35/4                                      | -                                            | 1,04       |            |                  |                           |                                   |           |                 |                                               |
| only static or quasi-stat            | tic actions)                              | C40/5                                      | -                                            |            |            |                  | 1,0                       |                                   |           |                 |                                               |
| Ψc                                   |                                           | C45/5                                      | 5                                            |            |            |                  | 1,0                       |                                   |           |                 |                                               |
|                                      |                                           | C50/6                                      | 60                                           |            |            |                  | 1,                        | 10                                |           |                 |                                               |
| Concrete cone failure                |                                           |                                            |                                              |            |            |                  |                           |                                   |           |                 |                                               |
| Non-cracked concrete                 |                                           | k <sub>ucr,N</sub>                         | [-]                                          |            |            |                  | 11                        | ,0                                |           |                 |                                               |
| Cracked concrete                     |                                           | k <sub>cr,N</sub>                          | [-]                                          |            |            |                  | 7,                        | 7                                 |           |                 |                                               |
| Edge distance                        |                                           | C <sub>cr,N</sub>                          | [mm]                                         |            |            |                  | 1,5                       | h <sub>ot</sub>                   |           |                 |                                               |
| Axial distance                       |                                           |                                            | [mm]                                         |            |            |                  | 2 c                       |                                   |           |                 |                                               |
| Splitting                            |                                           | S <sub>cr,N</sub>                          | [ [imin]                                     |            |            |                  | 20                        | cr,N                              |           |                 |                                               |
| Spinning                             |                                           |                                            |                                              |            |            |                  |                           |                                   |           |                 |                                               |
|                                      | h/h <sub>ef</sub> ≥ 2,0                   |                                            |                                              |            |            |                  | 1,0                       | h <sub>ef</sub>                   |           |                 |                                               |
| Talara allar                         |                                           |                                            |                                              |            |            |                  |                           | $\begin{bmatrix} h \end{bmatrix}$ | )         |                 |                                               |
| Edge distance                        | $2,0 > h/h_{cf} > 1,3$                    | C <sub>cr,sp</sub>                         | [mm]                                         |            |            |                  | $2 \cdot h_{ef} \Big  2,$ | $5-\frac{n}{h_{ef}}$              | )         |                 |                                               |
|                                      | h/h < 1.2                                 |                                            |                                              |            |            |                  | 2,4                       |                                   | ,<br>     |                 |                                               |
| A 1 - 1' - 1                         | h/h <sub>ef</sub> ≤ 1,3                   |                                            |                                              |            |            |                  | ,                         | <b>.</b>                          |           |                 |                                               |
| Axial distance                       |                                           | S <sub>cr,sp</sub>                         | [mm]                                         |            |            |                  | 2 c,                      | cr,sp                             |           |                 |                                               |
| nstallation factor                   |                                           |                                            | -1                                           |            |            |                  |                           |                                   |           |                 |                                               |
| or dry and wet concrete              | 9                                         | γinst                                      | [-]                                          | 1,0        |            |                  |                           | 1,2                               |           |                 |                                               |
| for flooded bore hole                |                                           | γinst                                      | [-]                                          |            | 1          | ,4               |                           | No Per                            | rformance | Assessed        | (NPA)                                         |
| Injection Syste                      | m ESSVE ONE or                            | ESSVE ON                                   | E ICE fo                                     | r conc     | rete       |                  |                           |                                   |           |                 |                                               |
| Performances                         |                                           | ESSVE ON                                   |                                              |            | rele       |                  |                           | _                                 | Ann       | ex C 2          | 2                                             |



| Table C3: Characteristi<br>seismic actic                                                                                    |                                   |      |     |      |                       | c, quas                                | si-stati                       | c actic | on and                |         |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|-----|------|-----------------------|----------------------------------------|--------------------------------|---------|-----------------------|---------|
| Anchor size threaded rod                                                                                                    |                                   |      | M 8 | M 10 | M 12                  | M 16                                   | M 20                           | M24     | M 27                  | M 30    |
| Steel failure without lever arm                                                                                             |                                   |      |     |      |                       |                                        |                                | I       |                       |         |
| Characteristic shear resistance<br>Steel, strength class 4.6 and 4.8                                                        | V <sup>0</sup> <sub>Rk,s</sub>    | [kN] |     |      | 0,6                   | • A <sub>s</sub> • f <sub>uk</sub> (or | r see Table                    | e C1)   |                       |         |
| Characteristic shear resistance<br>Steel, strength class 5.6, 5.8 and 8.8<br>Stainless Steel A2, A4 and HCR, all<br>classes | V <sup>0</sup> <sub>Rk,s</sub>    | [kN] |     |      | 0,5 ·                 | • A <sub>s</sub> • f <sub>uk</sub> (oi | r see Table                    | e C1)   |                       |         |
| Characteristic shear resistance                                                                                             | $V_{Rk,s,eq}$                     | [kN] |     |      |                       | 0,70 •                                 | V <sup>0</sup> <sub>Rk,s</sub> |         |                       |         |
| Partial factor                                                                                                              | γ <sub>Ms,V</sub>                 | [-]  |     |      |                       | see Ta                                 | able C1                        |         |                       |         |
| Ductility factor                                                                                                            | k7                                | [-]  |     |      |                       | 1                                      | ,0                             |         |                       |         |
| Steel failure with lever arm                                                                                                | -                                 |      | I   |      |                       |                                        |                                |         |                       |         |
| Oh                                                                                                                          | M <sup>0</sup> <sub>Rk,s</sub>    | [Nm] |     |      | 1,2 •                 | $W_{el} \cdot f_{uk}$ (o               | r see Tabl                     | e C1)   |                       |         |
| Characteristic bending moment                                                                                               | M <sup>0</sup> <sub>Rk,s,eq</sub> | [Nm] |     |      | No Pe                 | rformance                              | Assessed                       | (NPA)   |                       |         |
| Partial factor                                                                                                              | γMs,V                             | [-]  |     |      |                       | see Ta                                 | able C1                        |         |                       |         |
| Concrete pry-out failure                                                                                                    |                                   |      |     |      |                       |                                        |                                |         |                       |         |
| Factor                                                                                                                      | k <sub>8</sub>                    | [-]  |     |      |                       | 2                                      | ,0                             |         |                       |         |
| Installation factor                                                                                                         | γinst                             | [-]  |     |      |                       | 1                                      | ,0                             |         |                       |         |
| Concrete edge failure                                                                                                       |                                   |      |     |      |                       |                                        |                                |         |                       |         |
| Effective length of fastener                                                                                                | lf                                | [mm] |     |      | min(h <sub>ef</sub> ; | 12 · d <sub>nom</sub> )                |                                |         | min(h <sub>ef</sub> ; | 300 mm) |
| Outside diameter of fastener                                                                                                | d <sub>nom</sub>                  | [mm] | 8   | 10   | 12                    | 16                                     | 20                             | 24      | 27                    | 30      |
| Installation factor                                                                                                         | γinst                             | [-]  |     |      |                       | . 1                                    | ,0                             |         |                       | -       |
| Factor for annular gap                                                                                                      | $\alpha_{gap}$                    | [-]  |     |      |                       | 0,5 (                                  | 1,0) <sup>1)</sup>             |         |                       |         |

<sup>1)</sup> Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

#### Injection System ESSVE ONE or ESSVE ONE ICE for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Annex C 3



| Anchor size internal th                               | readed anchor rods                                                                                                |                        |                                              | IG-M 6     | IG-M 8     | IG-M 10                                             | IG-M 12         | IG-M 16            | IG-M 20   |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------|------------|------------|-----------------------------------------------------|-----------------|--------------------|-----------|
| Steel failure <sup>1)</sup>                           |                                                                                                                   |                        |                                              |            |            |                                                     |                 |                    |           |
| Characteristic tension re                             | ,                                                                                                                 | N <sub>Rk,s</sub>      | [kN]                                         | 10         | 17         | 29                                                  | 42              | 76                 | 123       |
| Steel, strength class 5.8<br>Partial factor           | )                                                                                                                 | γ <sub>Ms,N</sub>      | [-]                                          |            |            | 1.                                                  | 5               |                    |           |
| Characteristic tension re                             | esistance.                                                                                                        |                        |                                              | 10         | 07         | Í                                                   |                 | 101                | 100       |
| Steel, strength class 8.8                             |                                                                                                                   | N <sub>Rk,s</sub>      | [kN]                                         | 16         | 27         | 46                                                  | 67              | 121                | 196       |
| Partial factor                                        |                                                                                                                   | γms,N                  | [-]                                          |            | 1          | 1,                                                  | ,5              |                    |           |
| Characteristic tension re<br>Stainless Steel A4 and I | esistance,<br>HCR, Strength class 70                                                                              | N <sub>Rk,s</sub>      | [kN]                                         | 14         | 26         | 41                                                  | 59              | 110                | 124       |
| Partial factor                                        |                                                                                                                   | γ <sub>Ms,N</sub>      | [-]                                          |            |            | 1.87                                                |                 |                    | 2,86      |
| Combined pull-out and                                 | d concrete cone failure                                                                                           | 1                      |                                              |            |            | ,                                                   |                 |                    | ,         |
| Characteristic bond resi                              | stance in non-cracked concre                                                                                      | ete C20/25             |                                              |            |            |                                                     |                 |                    |           |
| Temperature range I:                                  | dry and wet concrete                                                                                              | $\tau_{Rk,ucr}$        | [N/mm <sup>2</sup> ]                         | 12         | 12         | 12                                                  | 12              | 11                 | 9         |
| 40°C/24°C                                             | flooded bore hole                                                                                                 | $	au_{Rk,ucr}$         | [N/mm <sup>2</sup> ]                         | 8,5        | 8,5        | 8,5                                                 | No Perfor       | mance Asses        | sed (NPA) |
| Temperature range II:                                 | dry and wet concrete                                                                                              | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ]                         | 9          | 9          | 9                                                   | 9               | 8,5                | 6,5       |
| 80°C/50°C                                             | flooded bore hole                                                                                                 | $	au_{Rk,ucr}$         | [N/mm <sup>2</sup> ]                         | 6,5        | 6,5        | 6,5                                                 |                 | mance Asses        | sed (NPA) |
| Temperature range III:                                | dry and wet concrete                                                                                              | $	au_{Rk,ucr}$         | [N/mm <sup>2</sup> ]                         | 6,5        | 6,5        | 6,5                                                 | 6,5             | 6,5                | 5,0       |
| 120°C/72°C                                            | flooded bore hole                                                                                                 | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ]                         | 5,0        | 5,0        | 5,0                                                 | No Perfor       | mance Asses        | sed (NPA) |
| Characteristic bond resi                              | stance in cracked concrete C                                                                                      | 20/25                  |                                              |            |            |                                                     |                 |                    |           |
| Temperature range I:<br>40°C/24°C                     | dry and wet concrete                                                                                              | $\tau_{Rk,cr}$         | [N/mm <sup>2</sup> ]                         | 5,0        | 5,5        | 5,5                                                 | 5,5             | 5,5                | 6,5       |
|                                                       | flooded bore hole                                                                                                 | $\tau_{Rk,cr}$         | [N/mm <sup>2</sup> ]                         | 4,0        | 5,5        | 5,5                                                 |                 | mance Asses        | · · ·     |
| Temperature range II:<br>80°C/50°C                    | dry and wet concrete<br>flooded bore hole                                                                         | τ <sub>Rk,cr</sub>     | [N/mm <sup>2</sup> ]                         | 3,5        | 4,0        | 4,0                                                 | 4,0             | 4,0<br>mance Asses | 4,5       |
|                                                       | dry and wet concrete                                                                                              | τ <sub>Rk,cr</sub>     | [N/mm <sup>2</sup> ]<br>[N/mm <sup>2</sup> ] | 3,0<br>2,5 | 4,0<br>3.0 | 4,0<br>3.0                                          | 3,0             | 3.0                | 3.5       |
| Temperature range III:<br>120°C/72°C                  | flooded bore hole                                                                                                 | τ <sub>Rk,cr</sub>     | [N/mm <sup>2</sup> ]                         | 2,5        | 3,0        | 3,0                                                 | ,               | 3,0<br>mance Asses | ,         |
|                                                       |                                                                                                                   |                        | 25/30                                        | 2,5        | 3,0        | <u> </u>                                            |                 | mance Asses        |           |
|                                                       |                                                                                                                   |                        | 30/37                                        |            |            | 1,0                                                 |                 |                    |           |
| Increasing factors for co                             | oncrete                                                                                                           |                        | 35/45                                        |            |            | 1,0                                                 |                 |                    |           |
| ψ <sub>c</sub>                                        |                                                                                                                   | C                      | 40/50                                        |            |            | 1,0                                                 |                 |                    |           |
|                                                       |                                                                                                                   | C                      | 45/55                                        |            |            | 1,0                                                 | 09              |                    |           |
|                                                       |                                                                                                                   | С                      | 50/60                                        |            |            | 1,                                                  | 10              |                    |           |
| Concrete cone failure                                 |                                                                                                                   |                        |                                              |            |            |                                                     |                 |                    |           |
| Non-cracked concrete                                  |                                                                                                                   | k <sub>ucr,N</sub>     | [-]                                          |            |            |                                                     | ,0              |                    |           |
| Cracked concrete                                      |                                                                                                                   | k <sub>cr,N</sub>      | [-]                                          |            |            | 7,                                                  |                 |                    |           |
| Edge distance                                         |                                                                                                                   | C <sub>cr,N</sub>      | [mm]                                         |            |            |                                                     | h <sub>ef</sub> |                    |           |
| Axial distance                                        |                                                                                                                   | S <sub>cr,N</sub>      | [mm]                                         |            |            | 2 c                                                 | cr,N            |                    |           |
| Splitting failure                                     |                                                                                                                   |                        | 1                                            |            |            |                                                     |                 |                    |           |
|                                                       | h/h <sub>ef</sub> ≥ 2,0                                                                                           |                        |                                              |            |            | 1,0                                                 | h <sub>ef</sub> |                    |           |
| Edge distance                                         | 2,0 > h/h <sub>ef</sub> > 1,3                                                                                     |                        | [mm]                                         |            |            | $2 \cdot h_{ef} \Big( 2 \Big)$                      | $5-\frac{h}{1}$ |                    |           |
| Luge distance                                         | 2,0 / 1/1 <sub>et</sub> / 1,0                                                                                     | C <sub>cr,sp</sub>     | [mm]                                         |            |            | $\sum n_{ef} \left( \sum_{i=1}^{n} n_{ef} \right) $ | $h_{ef}$        |                    |           |
|                                                       | h/h <sub>ef</sub> ≤ 1,3                                                                                           |                        |                                              |            |            | 2,4                                                 | h <sub>et</sub> |                    |           |
| Axial distance                                        | ·····ei = ··;•                                                                                                    | 6                      | [mm]                                         |            |            | 2 c                                                 |                 |                    |           |
|                                                       |                                                                                                                   | S <sub>cr,sp</sub>     | [[[[[[                                       |            |            | 20                                                  | cr,sp           |                    |           |
| Installation factor                                   |                                                                                                                   |                        |                                              |            |            |                                                     |                 |                    |           |
| for dry and wet concrete                              | 9                                                                                                                 | γinst                  | [-]                                          |            |            | 1,                                                  | 2               |                    |           |
| or flooded bore hole                                  |                                                                                                                   | γinst                  | [-]                                          |            | 1,4        |                                                     |                 | -                  |           |
| threaded rod                                          | rews or threaded rods (incl. r<br>l. The characteristic tension r<br>ening element.<br>strength class 50 is valid |                        |                                              |            |            |                                                     |                 |                    |           |
| Injection System<br>Performances                      | m ESSVE ONE or ES                                                                                                 | SSVE ON                | E ICE fo                                     | r concre   | ete        |                                                     |                 | Annex (            | 2.4       |



| Anchor size for internal threaded                                                                                                    | d anchor ro                    | ods          | IG-M 6         | IG-M 8        | IG-M 10                                  | IG-M 12        | IG-M 16                            | IG-M 20                                        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|----------------|---------------|------------------------------------------|----------------|------------------------------------|------------------------------------------------|--|--|--|
| Steel failure without lever arm <sup>1)</sup>                                                                                        |                                |              |                |               |                                          |                |                                    |                                                |  |  |  |
| Characteristic shear resistance,<br>Steel, strength class 5.8                                                                        | V <sup>0</sup> <sub>Rk,s</sub> | [kN]         | 5              | 9             | 15                                       | 21             | 38                                 | 61                                             |  |  |  |
| Partial factor                                                                                                                       | γмэ,∨                          | [-]          |                |               |                                          | 1,25           |                                    |                                                |  |  |  |
| Characteristic shear resistance,<br>Steel, strength class 8.8                                                                        | V <sup>0</sup> <sub>Rk,s</sub> | [kN]         | 8              | 14            | 23                                       | 34             | 60                                 | 98                                             |  |  |  |
| Partial factor                                                                                                                       | γMs,∨                          | [-]          |                | 1             |                                          | 1,25           | 11                                 |                                                |  |  |  |
| Characteristic shear resistance,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>                                   | V <sup>0</sup> <sub>Rk,s</sub> | [kN]         | 7              | 13            | 20                                       | 30             | 55                                 | 40                                             |  |  |  |
| Partial factor                                                                                                                       | γMs,V                          | [-]          |                |               | 1,56                                     |                |                                    | 2,38                                           |  |  |  |
| Ductility factor                                                                                                                     | k <sub>7</sub>                 | [-]          |                |               |                                          |                |                                    |                                                |  |  |  |
| Steel failure with lever arm <sup>1)</sup>                                                                                           |                                | -            |                |               |                                          |                |                                    |                                                |  |  |  |
| Characteristic bending moment,<br>Steel, strength class 5.8                                                                          | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]         | 8              | 19            | 37                                       | 66             | 167                                | 325                                            |  |  |  |
| Partial factor                                                                                                                       | γ <sub>Ms,V</sub>              | [-]          |                | 1             | 1                                        | 1,25           | 11                                 |                                                |  |  |  |
| Characteristic bending moment,<br>Steel, strength class 8.8                                                                          | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]         | 12             | 30            | 60                                       | 105            | 267                                | 519                                            |  |  |  |
| Partial factor                                                                                                                       | γ <sub>Ms,V</sub>              | [-]          |                | •             |                                          | 1,25           |                                    |                                                |  |  |  |
| Characteristic bending moment,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>                                     | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]         | 11             | 26            | 52                                       | 92             | 233                                | 456                                            |  |  |  |
| Partial factor                                                                                                                       | γ̃Ms,∨                         | [-]          |                |               | 1,56                                     |                |                                    | 2,38                                           |  |  |  |
| Concrete pry-out failure                                                                                                             |                                |              |                |               |                                          |                |                                    |                                                |  |  |  |
| Factor                                                                                                                               | k <sub>8</sub>                 | [-]          |                |               |                                          | 2,0            |                                    |                                                |  |  |  |
| Installation factor                                                                                                                  | γinst                          | [-]          |                |               |                                          | 1,0            |                                    |                                                |  |  |  |
| Concrete edge failure                                                                                                                |                                |              |                |               |                                          |                |                                    |                                                |  |  |  |
| Effective length of fastener                                                                                                         | lf                             | [mm]         |                | m             | in(h <sub>ef</sub> ; 12 • d <sub>n</sub> | om)            |                                    | min(h <sub>ef</sub> ; 300 mm)                  |  |  |  |
| Outside diameter of fastener                                                                                                         | d <sub>nom</sub>               | [mm]         | 10             | 12            | 16                                       | 20             | 24                                 | 30                                             |  |  |  |
| Installation factor                                                                                                                  | γinst                          | [-]          |                |               |                                          | 1,0            |                                    |                                                |  |  |  |
| <ol> <li>Fastening screws or thr<br/>threaded rod. The chara<br/>and the fastening eleme</li> <li>For IG-M20 strength cla</li> </ol> | acteristic te<br>ent.          | nsion resist | tance for stee | nust comply v | with the appro                           | ppriate materi | aı and propert<br>valid for the ir | y class of the interna<br>iternal threaded rod |  |  |  |
| Injection System ESSV<br>Performances                                                                                                | E ONE                          | or ESS\      | /E ONE I       | CE for co     | oncrete                                  |                |                                    | Annex C 5                                      |  |  |  |



| Table C6: Ch<br>sei                  | aracteris<br>smic act           |              |                        |                                              |            |            | er sta     | tic, qı       | uasi-s                  | static            | actio            | n and           |          |
|--------------------------------------|---------------------------------|--------------|------------------------|----------------------------------------------|------------|------------|------------|---------------|-------------------------|-------------------|------------------|-----------------|----------|
| Anchor size reinforcin               | g bar                           |              |                        |                                              | Ø8         | Ø 10       | Ø 12       | Ø 14          | Ø 16                    | Ø 20              | Ø 25             | Ø 28            | Ø 32     |
| Steel failure                        |                                 | -            |                        |                                              | -          |            |            |               |                         |                   |                  |                 |          |
| Characteristic tension re            | esistance                       |              | $N_{Rk,s}$             | [kN]                                         |            |            |            |               | $A_s \cdot f_{uk}$      |                   |                  |                 |          |
|                                      | Sistance                        |              | N <sub>Rk,s, eq</sub>  | [kN]                                         |            |            |            | 1,0           | $0 \cdot A_{s} \cdot f$ | uk                |                  |                 |          |
| Cross section area                   |                                 |              | As                     | [mm²]                                        | 50         | 79         | 113        | 154           | 201                     | 314               | 491              | 616             | 804      |
| Partial factor                       |                                 |              | γMs,N                  | [-]                                          |            |            |            |               | 1,4 <sup>2)</sup>       |                   |                  |                 |          |
| Combined pull-out and                |                                 |              |                        |                                              |            |            |            |               |                         |                   |                  |                 |          |
| Characteristic bond resi             | 1                               |              | oncrete C20/           |                                              |            |            |            |               |                         |                   |                  |                 |          |
| Temperature range I:<br>40°C/24°C    | dry and wet                     |              | $	au_{Rk,ucr}$         | [N/mm <sup>2</sup> ]                         | 10         | 12         | 12         | 12            | 12                      | 12                | 11               | 10              | 8,5      |
|                                      | flooded bor                     |              | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ]                         | 7,5        | 8,5        | 8,5        | 8,5           | 8,5                     |                   | rformance        | -               | <u> </u> |
| Temperature range II:<br>80°C/50°C   | dry and wet                     |              | τ <sub>Rk,ucr</sub>    | [N/mm <sup>2</sup> ]                         | 7,5        | 9          | 9          | 9             | 9                       | 9                 | 8,0              | 7,0             | 6,0      |
|                                      | flooded bord<br>dry and wet     |              | τ <sub>Rk,ucr</sub>    | [N/mm <sup>2</sup> ]<br>[N/mm <sup>2</sup> ] | 5,5<br>5,5 | 6,5<br>6,5 | 6,5<br>6,5 | 6,5<br>6,5    | 6,5<br>6,5              | 6.5               | rformance<br>6.0 | Assessed<br>5,0 | 4,5      |
| Temperature range III:<br>120°C/72°C | flooded bor                     |              | τ <sub>Rk,ucr</sub>    | [N/mm <sup>2</sup> ]                         | 4.0        | 5.0        | 5.0        | 5.0           | 5.0                     | - 7 -             | rformance        | ,               | ,        |
| Characteristic bond resi             |                                 |              | te C20/25              | [[w/mm-]                                     | 4,0        | 5,0        | 5,0        | 5,0           | 5,0                     | NOFE              | nonnance         | A3563560        |          |
|                                      |                                 |              | $\tau_{\rm Rk,cr}$     | [N/mm <sup>2</sup> ]                         | 4,0        | 5,0        | 5,5        | 5,5           | 5,5                     | 5,5               | 5,5              | 6,5             | 6,5      |
| Temperature range I:                 | dry and wet                     | concrete     | τ <sub>Rk,eq</sub>     | [N/mm <sup>2</sup> ]                         | 2,5        | 3,1        | 3,7        | 3,7           | 3,7                     | 3.7               | 3,8              | 4,5             | 4,5      |
| 40°C/24°C                            |                                 |              | τ <sub>Rk,cr</sub>     | [N/mm <sup>2</sup> ]                         | 4,0        | 4,0        | 5,5        | 5,5           | 5,5                     | - ,               | rformance        | , í             | <i>,</i> |
|                                      | flooded bor                     | e hole       | $\tau_{\rm Rk,eq}$     | [N/mm <sup>2</sup> ]                         | 2,5        | 2,5        | 3,7        | 3,7           | 3,7                     | No Pe             | rformance        | Assessed        | (NPA)    |
|                                      |                                 |              | $\tau_{\rm Rk,cr}$     | [N/mm <sup>2</sup> ]                         | 2,5        | 3,5        | 4,0        | 4,0           | 4,0                     | 4,0               | 4,0              | 4,5             | 4,5      |
| Temperature range II:                | dry and wet                     | concrete     | $\tau_{\rm Rk,eq}$     | [N/mm <sup>2</sup> ]                         | 1,6        | 2,2        | 2,7        | 2,7           | 2,7                     | 2,7               | 2,8              | 3,1             | 3,1      |
| 80°Ċ/50°C                            | flooded bor                     | a hala       | $\tau_{\text{Rk,cr}}$  | [N/mm <sup>2</sup> ]                         | 2,5        | 3,0        | 4,0        | 4,0           | 4,0                     | No Pe             | rformance        | Assessed        | l (NPA)  |
|                                      |                                 | enole        | $\tau_{Rk,eq}$         | [N/mm²]                                      | 1,6        | 1,9        | 2,7        | 2,7           | 2,7                     | No Pe             | rformance        | Assessed        | l (NPA)  |
|                                      | dry and wet                     | concrete     | $\tau_{\text{Rk,cr}}$  | [N/mm <sup>2</sup> ]                         | 2,0        | 2,5        | 3,0        | 3,0           | 3,0                     | 3,0               | 3,0              | 3,5             | 3,5      |
| Temperature range III:               |                                 | concrete     | $\tau_{Rk,eq}$         | [N/mm <sup>2</sup> ]                         | 1,3        | 1,6        | 2,0        | 2,0           | 2,0                     | 2,0               | 2,1              | 2,4             | 2,4      |
| 120°C/72°C                           | flooded bor                     | e hole       | $\tau_{\text{Rk,cr}}$  | [N/mm <sup>2</sup> ]                         | 2,0        | 2,5        | 3,0        | 3,0           | 3,0                     |                   | rformance        |                 | , ,      |
|                                      |                                 |              | τ <sub>Rk,eq</sub>     | [N/mm <sup>2</sup> ]                         | 1,3        | 1,6        | 2,0        | 2,0           | 2,0                     | No Pe             | rformance        | Assessed        | d (NPA)  |
|                                      |                                 |              |                        | 5/30                                         |            |            |            |               | 1,02                    |                   |                  |                 |          |
| Increasing factors for co            | oncrete                         |              |                        | )/37<br>5/45                                 |            |            |            |               | 1,04<br>1,07            |                   |                  |                 |          |
| (only static or quasi-stat           |                                 |              |                        | 0/45<br>0/50                                 |            |            |            |               | 1,07                    |                   |                  |                 |          |
| Ψc                                   |                                 |              |                        | 5/55                                         |            |            |            |               | 1,08                    |                   |                  |                 |          |
|                                      |                                 |              |                        | )/60                                         |            |            |            |               | 1,10                    |                   |                  |                 |          |
| Concrete cone failure                |                                 |              |                        |                                              |            |            |            |               | .,                      |                   |                  |                 |          |
| Non-cracked concrete                 |                                 |              | k <sub>ucr,N</sub>     | [-]                                          |            |            |            |               | 11,0                    |                   |                  |                 |          |
| Cracked concrete                     |                                 |              | k <sub>cr,N</sub>      | [-]                                          |            |            |            |               | 7,7                     |                   |                  |                 |          |
| Edge distance                        |                                 |              | C <sub>cr,N</sub>      | [mm]                                         |            |            |            |               | 1,5 h <sub>ef</sub>     |                   |                  |                 |          |
| Axial distance                       |                                 |              | S <sub>cr,N</sub>      | [mm]                                         |            |            |            |               | $2 c_{\text{cr,N}}$     |                   |                  |                 |          |
| Splitting                            |                                 |              |                        |                                              |            |            |            |               |                         |                   |                  |                 |          |
|                                      | h/h <sub>ef</sub> ≥ 2,0         |              |                        |                                              |            |            |            |               | 1,0 h <sub>ef</sub>     |                   |                  |                 |          |
|                                      |                                 |              |                        |                                              |            |            |            |               | (                       | h                 |                  |                 |          |
| Edge distance                        | 2,0 > h/h <sub>ef</sub> >       | 1,3          | C <sub>cr,sp</sub>     | [mm]                                         |            |            |            | $2 \cdot h_e$ | <sub>f</sub> 2,5 –      | $\frac{1}{h}$     |                  |                 |          |
|                                      |                                 |              |                        |                                              |            |            |            |               |                         | N <sub>ef</sub> ) |                  |                 |          |
|                                      | h/h <sub>ef</sub> ≤ 1,3         |              |                        |                                              |            |            |            |               | 2,4 h <sub>ef</sub>     |                   |                  |                 |          |
| Axial distance                       |                                 |              | S <sub>cr,sp</sub>     | [mm]                                         |            |            |            |               | $2  c_{\text{cr,sp}}$   |                   |                  |                 |          |
| Installation factor                  |                                 |              |                        |                                              |            |            |            |               |                         |                   |                  |                 |          |
| for dry and wet concrete             | 9                               |              | γinst                  | [-]                                          | 1,0        |            |            |               | 1                       | ,2                |                  |                 |          |
| for flooded bore hole                | n from the                      | odifications | γinst                  | [-]                                          |            |            | 1,4        |               |                         | No Pe             | rformance        | Assessed        | I (NPA)  |
| <sup>2)</sup> in absence of n        | n from the sp<br>ational regula | tion         | or remorcin            | g bars                                       |            |            |            |               |                         |                   |                  |                 |          |
|                                      |                                 |              |                        |                                              |            |            |            |               |                         |                   |                  |                 |          |
| Injection Syster                     | m F99\/F                        | ONE or       | FSSVF                  |                                              | F for d    | oner       | oto        |               |                         |                   |                  |                 |          |
|                                      |                                 |              |                        |                                              |            |            |            |               |                         |                   |                  |                 |          |
| Performances                         |                                 |              |                        |                                              |            |            |            |               |                         | 1                 | Anne             | ex C 6          | 6        |
| Characteristic values                |                                 |              | er static, qu          | Jasi-static                                  | action a   | and        |            |               |                         |                   |                  |                 |          |
| seismic action (perfo                | ormance cat                     | egory C1)    |                        |                                              |            |            |            |               |                         |                   |                  |                 |          |



| Table C7: Characteristic value<br>seismic action (perf                                                                                                                                                                                              |                                    |           |          |           | atic,                   | quas                | i-stat                 | ic act      | tion a  | nd                      |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|----------|-----------|-------------------------|---------------------|------------------------|-------------|---------|-------------------------|------|
| Anchor size reinforcing bar                                                                                                                                                                                                                         |                                    |           | Ø 8      | Ø 10      | Ø 12                    | Ø 14                | Ø 16                   | Ø 20        | Ø 25    | Ø 28                    | Ø 32 |
| Steel failure without lever arm                                                                                                                                                                                                                     |                                    |           |          |           |                         |                     |                        |             |         |                         |      |
| Characteristic shear resistance                                                                                                                                                                                                                     | V <sup>0</sup> <sub>Rk,s</sub>     | [kN]      |          |           |                         | 0,5                 | 0 • A <sub>s</sub> • 1 | r 1)<br>luk |         |                         |      |
|                                                                                                                                                                                                                                                     | V <sub>Rk,s, eq</sub>              | [kN]      |          |           |                         | 0,3                 | 5 • A <sub>s</sub> • 1 | uk (1)      |         |                         |      |
| Cross section area                                                                                                                                                                                                                                  | A <sub>s</sub>                     | [mm²]     | 50       | 79        | 113                     | 154                 | 201                    | 314         | 491     | 616                     | 804  |
| Partial factor                                                                                                                                                                                                                                      | ŶMs,V                              | [-]       |          |           |                         |                     | 1,5 <sup>2)</sup>      |             |         |                         |      |
| Ductility factor                                                                                                                                                                                                                                    | k <sub>7</sub>                     | [-]       |          |           |                         |                     | 1,0                    |             |         |                         |      |
| Steel failure with lever arm                                                                                                                                                                                                                        |                                    |           |          |           |                         |                     |                        |             |         |                         |      |
| Characteristic bending moment                                                                                                                                                                                                                       | M <sup>0</sup> <sub>Rk,s</sub>     | [Nm]      |          |           |                         | 1.2                 | ∶∙W <sub>el</sub> ∙ f  | : 1)<br>uk  |         |                         |      |
| Characteristic benoing moment                                                                                                                                                                                                                       | M <sup>0</sup> <sub>Bk,s, eq</sub> | [Nm]      |          |           | No P                    | erforma             | nce Ass                | essed (I    | NPA)    |                         |      |
| Elastic section modulus                                                                                                                                                                                                                             | W <sub>el</sub>                    | [mm³]     | 50       | 98        | 170                     | 269                 | 402                    | 785         | 1534    | 2155                    | 3217 |
| Partial factor                                                                                                                                                                                                                                      | ŶMs,V                              | [-]       |          |           |                         |                     | 1,5 <sup>2)</sup>      |             |         |                         |      |
| Concrete pry-out failure                                                                                                                                                                                                                            | ·                                  |           |          |           |                         |                     |                        |             |         |                         |      |
| Factor                                                                                                                                                                                                                                              | k <sub>8</sub>                     | [-]       |          |           |                         |                     | 2,0                    |             |         |                         |      |
| Installation factor                                                                                                                                                                                                                                 | γinst                              | [-]       |          |           |                         |                     | 1,0                    |             |         |                         |      |
| Concrete edge failure                                                                                                                                                                                                                               |                                    |           |          |           |                         |                     |                        |             |         |                         |      |
| Effective length of fastener                                                                                                                                                                                                                        | lf                                 | [mm]      |          | r         | nin(h <sub>ef</sub> ; 1 | l2•d <sub>nom</sub> | )                      |             | min(    | h <sub>ef</sub> ; 300 ا | mm)  |
| Outside diameter of fastener                                                                                                                                                                                                                        | d <sub>nom</sub>                   | [mm]      | 8        | 10        | 12                      | 14                  | 16                     | 20          | 25      | 28                      | 32   |
| Installation factor                                                                                                                                                                                                                                 | γinst                              | [-]       |          |           |                         |                     | 1,0                    |             |         |                         |      |
| Factor for annular gap                                                                                                                                                                                                                              | $lpha_{gap}$                       | [-]       |          |           |                         | C                   | ),5 (1,0) <sup>1</sup> | )           |         |                         |      |
| <ol> <li><sup>1)</sup> f<sub>uk</sub> shall be taken from the specifications of reinfor</li> <li><sup>2)</sup> in absence of national regulation</li> <li><sup>3)</sup> Value in brackets valid for filled annular gab betw<br/>required</li> </ol> |                                    | d clearar | ice hole | in the fi | xture. U                | se of sp            | ecial fillin           | ng wash     | er Anne | x A 3 is                |      |

#### Injection System ESSVE ONE or ESSVE ONE ICE for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)  $\,$ 

Annex C 7



| Table C8: Di           | splaceme                      | ents under tens           | ion load <sup>1)</sup> | (threa | aded ro | od)   |       |       |       |       |
|------------------------|-------------------------------|---------------------------|------------------------|--------|---------|-------|-------|-------|-------|-------|
| Anchor size thread     | led rod                       |                           | M 8                    | M 10   | M 12    | M 16  | M 20  | M24   | M 27  | M 30  |
| Non-cracked conc       | rete C20/25                   | i                         | •                      |        |         |       |       |       |       |       |
| Temperature range I:   | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )] | 0,021                  | 0,023  | 0,026   | 0,031 | 0,036 | 0,041 | 0,045 | 0,049 |
| 40°C/24°C              | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )] | 0,030                  | 0,033  | 0,037   | 0,045 | 0,052 | 0,060 | 0,065 | 0,071 |
| Temperature range II:  | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )] | 0,050                  | 0,056  | 0,063   | 0,075 | 0,088 | 0,100 | 0,110 | 0,119 |
| 80°C/50°C              | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )] | 0,072                  | 0,081  | 0,090   | 0,108 | 0,127 | 0,145 | 0,159 | 0,172 |
| Temperature range III: | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )] | 0,050                  | 0,056  | 0,063   | 0,075 | 0,088 | 0,100 | 0,110 | 0,119 |
| 120°C/72°Č             | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )] | 0,072                  | 0,081  | 0,090   | 0,108 | 0,127 | 0,145 | 0,159 | 0,172 |
| Cracked concrete       | C20/25                        |                           |                        |        |         |       |       |       |       |       |
| Temperature range I:   | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )] | 0,0                    | )90    |         |       | 0,0   | )70   |       |       |
| 40°C/24°C              | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )] | 0,1                    | 05     |         |       | 0,1   | 05    |       |       |
| Temperature range II:  | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )] | 0,2                    | 219    |         |       | 0,1   | 70    |       |       |
| 80°C/50°C              | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )] | 0,2                    | 255    |         |       | 0,2   | 245   |       |       |
| Temperature range III: | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )] | 0,2                    | 219    |         |       | 0,1   | 70    |       |       |
| 120°C/72°C             | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )] | 0,2                    | 255    |         |       | 0,2   | 245   |       |       |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \quad \tau: \text{ action bond stress for tension}$ 

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor  $\cdot \tau$ ;

### Table C9: Displacements under shear load<sup>1)</sup> (threaded rod)

| Anchor size three                                                                                                               | eaded rod                     |                            | M 8  | M 10 | M 12 | M 16 | M 20 | M24  | M 27 | M 30 |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|------|------|------|------|------|------|------|------|
| For non-cracked                                                                                                                 | d concrete C2                 | 0/25                       |      |      |      |      |      |      |      |      |
| All temperature                                                                                                                 | $\delta_{V0}$ -factor         | [mm/kN]                    | 0,06 | 0,06 | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| ranges                                                                                                                          | $\delta_{V_{\infty}}$ -factor | [mm/kN]                    | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |
| For cracked cor                                                                                                                 | crete C20/25                  |                            |      |      |      |      |      |      |      |      |
| All temperature                                                                                                                 | $\delta_{V0}$ -factor         | [mm/kN]                    | 0,12 | 0,12 | 0,11 | 0,10 | 0,09 | 0,08 | 0,08 | 0,07 |
| ranges                                                                                                                          | $\delta_{V_{\infty}}$ -factor | [mm/kN]                    | 0,18 | 0,18 | 0,17 | 0,15 | 0,14 | 0,13 | 0,12 | 0,10 |
| $\delta_{V0} = \delta_{V0}$ -factor $\delta_{V\infty} = \delta_{V\infty}$ -factor $\delta_{V\infty} = \delta_{V\infty}$ -factor |                               | nt<br>V: action shear load |      |      |      |      |      |      |      |      |
| $\delta_{V0} = \delta_{V0}$ -facto                                                                                              | or ·V;                        |                            |      |      |      |      |      |      |      |      |



0,05

0,06

0,05

0,04

0,04

| Anchor size reinfo                                                                                                                             | orcing bar                    |                                        | Ø 8   | Ø 10  | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 25  | Ø 28  | Ø 32  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Non-cracked cond                                                                                                                               | crete C20/                    | 25                                     | 1     |       |       |       |       |       |       |       |       |
| Temperature range I:                                                                                                                           | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]              | 0,021 | 0,023 | 0,026 | 0,028 | 0,031 | 0,036 | 0,043 | 0,047 | 0,052 |
| 40°C/24°C                                                                                                                                      | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )]              | 0,030 | 0,033 | 0,037 | 0,041 | 0,045 | 0,052 | 0,061 | 0,071 | 0,075 |
| Temperature range II:                                                                                                                          | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]              | 0,050 | 0,056 | 0,063 | 0,069 | 0,075 | 0,088 | 0,104 | 0,113 | 0,126 |
| 80°C/50°C                                                                                                                                      | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )]              | 0,072 | 0,081 | 0,090 | 0,099 | 0,108 | 0,127 | 0,149 | 0,163 | 0,181 |
| Temperature range III:                                                                                                                         | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]              | 0,050 | 0,056 | 0,063 | 0,069 | 0,075 | 0,088 | 0,104 | 0,113 | 0,126 |
| 120°C/72°Č                                                                                                                                     | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )]              | 0,072 | 0,081 | 0,090 | 0,099 | 0,108 | 0,127 | 0,149 | 0,163 | 0,181 |
| Cracked concrete                                                                                                                               | C20/25                        |                                        |       |       |       | •     |       |       | •     |       |       |
| Temperature range I:                                                                                                                           | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]              | 0,0   | 090   |       |       |       | 0,070 |       |       |       |
| 40°C/24°C                                                                                                                                      | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )]              | 0,1   | 105   |       |       |       | 0,105 |       |       |       |
| Temperature range II:                                                                                                                          | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]              | 0,2   | 219   |       |       |       | 0,170 |       |       |       |
| 80°C/50°C                                                                                                                                      | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )]              | 0,2   | 255   |       |       |       | 0,245 |       |       |       |
| Temperature range III:                                                                                                                         | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]              | 0,2   | 219   |       |       |       | 0,170 |       |       |       |
| 120°C/72°C                                                                                                                                     | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )]              | 0,2   | 255   |       |       |       | 0,245 |       |       |       |
| <sup>1)</sup> Calculation of th<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C11: D</b> | ·τ;<br>·τ;                    | nent<br>τ: action bonc<br>nent under s |       |       |       |       |       |       |       |       |       |
| Anchor size reinfo                                                                                                                             |                               |                                        | Ø 8   | Ø 10  | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 25  | Ø 28  | Ø 32  |
| Non-cracked cond                                                                                                                               | crete C20/2                   | 25                                     | 1     |       | 1     |       | 1     | 1     | 1     | 1     |       |
| All temperature                                                                                                                                | $\delta_{V0}$ -factor         | [mm/kN]                                | 0,06  | 0,05  | 0,05  | 0,04  | 0,04  | 0,04  | 0,03  | 0,03  | 0,03  |
| rangaa                                                                                                                                         | 1                             |                                        | 1     | 1     | 1     | 1     | 1     |       |       | 1     | 1     |

#### Cracked concrete C20/25

ranges

| All temperature | $\delta_{V0}$ -factor             | [mm/kN] | 0,12 | 0,12 | 0,11 | 0,11 | 0,10 | 0,09 | 0,08 | 0,07 | 0,06 |
|-----------------|-----------------------------------|---------|------|------|------|------|------|------|------|------|------|
| ranges          | $\delta_{V_\infty}\text{-factor}$ | [mm/kN] | 0,18 | 0,18 | 0,17 | 0,16 | 0,15 | 0,14 | 0,12 | 0,11 | 0,10 |

0,08

0,08

0,06

0,09

<sup>1)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \quad V; \qquad \qquad V: \text{ action shear load}$ 

 $\delta_{V\infty}$ -factor

[mm/kN]

$$\begin{split} \delta_{V0} &= \delta_{V0} \text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty} \text{-factor} \quad V; \end{split}$$

| Injection System | ESSVE ONE or I | ESSVE ONE ICE | for concrete |
|------------------|----------------|---------------|--------------|
|------------------|----------------|---------------|--------------|

Performances Displacements (rebar) Annex C 9



| static and quasi-static           [mm/(N/mm²)]           [mm/(N/mm²)]           [mm/(N/mm²)]           [mm/(N/mm²)]           [mm/(N/mm²)]           [mm/(N/mm²)]           [mm/(N/mm²)] | c action<br>0,023<br>0,033<br>0,056<br>0,081 | 0,026<br>0,037<br>0,063 | 0,031    | 0,036   | 0,041   | 0.040   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|----------|---------|---------|---------|
| [mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]                                            | 0,033<br>0,056                               | 0,037                   |          | -       | 0,041   | 0.040   |
| [mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]                                                                         | 0,056                                        |                         | 0,045    |         |         | 0,049   |
| [mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]                                                                                                      |                                              | 0.063                   |          | 0,052   | 0,060   | 0,071   |
| [mm/(N/mm <sup>2</sup> )]<br>[mm/(N/mm <sup>2</sup> )]                                                                                                                                   | 0,081                                        | 0,000                   | 0,075    | 0,088   | 0,100   | 0,119   |
| [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                |                                              | 0,090                   | 0,108    | 0,127   | 0,145   | 0,172   |
|                                                                                                                                                                                          | 0,056                                        | 0,063                   | 0,075    | 0,088   | 0,100   | 0,119   |
|                                                                                                                                                                                          | 0,081                                        | 0,090                   | 0,108    | 0,127   | 0,145   | 0,172   |
| ic and quasi-static act                                                                                                                                                                  |                                              |                         |          |         |         |         |
| [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                | 0,090                                        |                         |          | 0,070   |         |         |
| [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                | 0,105                                        |                         |          | 0,105   |         |         |
| [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                | 0,219                                        |                         |          | 0,170   |         |         |
| [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                | 0,255                                        |                         |          | 0,245   |         |         |
| [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                | 0,219                                        |                         |          | 0,170   |         |         |
| [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                | 0,255                                        |                         |          | 0,245   |         |         |
| s under shear loa                                                                                                                                                                        | ad <sup>1)</sup> (Inte                       | ernal th                | readed a | nchor r | od)     |         |
| ichor rod IG-M                                                                                                                                                                           | 16 IG                                        | -M 8 I                  | G-M 10   | IG-M 12 | IG-M 16 | IG-M 20 |
| ete C20/25 under sta                                                                                                                                                                     | atic and q                                   | uasi-stati              | c action |         |         |         |
| [mm/kN] 0,0                                                                                                                                                                              | 7 0                                          | ,06                     | 0,06     | 0,05    | 0,04    | 0,04    |
| [mm/kN] 0,1                                                                                                                                                                              | 0 0                                          | ,09                     | 0,08     | 0,08    | 0,06    | 0,06    |
| : action shear load                                                                                                                                                                      |                                              |                         |          |         |         |         |
|                                                                                                                                                                                          |                                              |                         |          |         |         |         |
|                                                                                                                                                                                          |                                              |                         |          |         |         |         |