ENVIRONMENTAL PRODUCT DECLARATION

ISO 14025 ISO 21930 EN 15804

Owner of the declaration Program holder Declaration number Issue date Valid to Saint-Gobain Byggevarer as The Norwegian EPD Foundation NEPD00290E 01.12.2014

01.12.2019

weber.base KC 50/50, dry mortar

Produc

Saint-Gobain Byggevarer as

General information

Product:

weber.base KC 50/50, dry mortar

Program holder:

The Norwegian EPD Foundation P.O.Box 5250 Majorstuen

0303 Oslo

Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number: NEPD00290E

This declaration is based on Product Category Rules:

EN 15804:2012+A1:2013 serve as core PCR Req. on the EPD for Mineral factory-made mortar

Declared unit:

1 kg weber.base KC 50/50, dry mortar

Declared unit with option:

A1,A2,A3,A4

Functional unit:

The EPD has been worked out by:

The declaration has been developed using EPDGen-version 1.0, Approval: NEPDT02

Company specific data are collected and registry by:

Line Holaker

Company specific data are audited by:

Stian Gravnås

Verification:

Independent verification of data, other environmental information and EPD has been carried out in accordance with ISO14025, 8.1.3 and 8.1.4

externally

Senior Researcher Anne Rønning (Independent verifier approved by EPD-Norway)

Declared unit:

1 kg weber.base KC 50/50, dry mortar

Key environmental indicators	Unit	Cradle to gate A1 - A3
Global warming	kg CO2 eqv	0,162972
Energy use	MJ	1,23519349
Dangerous substances		*

^{*}The product contains no substances from the REACH Candidate list or the Norwegian priority list

Owner of the declaration:

Saint-Gobain Byggevarer as Contact person: Line Holaker Phone: +47 22 88 77 00 e-mail: info(at)weber-norge.no

Manufacturer:

Saint-Gobain Byggevarer as

Place of production:

Weber Leca Ski, Norway

Management system:

ISO 9001, ISO 14001

Org. No:

940 198 178

Issue date: 01.12.2014

Valid to: 01.12.2019

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Year of study:

2014

Approved:

Dagfinn Malnes Managing Director of EPD-Norway

Transport A4

0,00369 0,0482830

Percent

6,84

80,18

10,64

2,34

0,00

Product

Product description:

weber.base KC 50/50 is a dry mortar based on cement and lime. When mixed with water, it is a ready to use mortar for indoor and outdoor use. weber.base KC 50/50 can be used as render on substrates of concrete, bricks, Leca® and other previously rendered surfaces or mineral based substances. The mortar can be applied as a thin slurry, applied as a base coat on Leca®, bricks and detached Leca-wall, and applied as a final coat on concrete, bricks and Leca®. weber.base KC 50/50 can also be used as repair mortar on lime-cement based rendered surfaces and as masonry mortar.

Technical data:

Mortar category: CS II (EN 998-1). Composition: KC 50/50/610. For further information see www.webernorge.no

Reference service life:

As for the building

Norway

Allocation:

Product specification:

table:

Materials

Aggregate

Packaging

Chemicals

Market:

Cement

Filler

The allocation is made in accordance with provisions in EN 15804. Incoming energy and water, and in-house waste from the production, is allocated equally among all products through mass allocation. Effects of primary production of recycled materials are allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

The composition of the product is described in the following

LCA: Calculation rules

Declared unit:

1 kg weber.base KC 50/50, dry mortar

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included.

Data quality:

Materials	Data quality	Source	Year
Cement	E	PD NEPD00023N	2013
Filler	Databa	ase Østfoldforskning	2013
Aggregate	Supplier d	ata Østfoldforskning	2013
Filler	Supplier d	ata Østfoldforskning	2013
Chemicals			
Packaging			
Packaging	European Avera	ige APME	
Packaging			

System boundary:

All processes from raw material extraction to product from the factory gate are included in the analysis (A1-A3). In addition, transportation to a central warehouse placed in accordance with guidelines issued by the EPD Norway (A4) is included.

FlowChart:

LCA: Scenarios and additional technical information

The following infomation describe the scenarios in the different modules of the EPD.

Transport from production site to user (A4)

Туре	Capacity	ilisation (incl. Type of vehicle D		Fuel/Energy consumption	Unit	Value (I/t)	
Truck	75 %	Lorry to market	50	0,015594	l/tkm	0,78	
Railway							
Boat							
Other							

Installation in the building (A5)

	Unit	Value
Auxiliary	kg	0
Water consumption	m3	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Material loss	kg	0
Output materials from waste treatment	kg	0
Dust in the air	kg	0

Label

Maintenance (B2)/Repair (B3)

	Unit	Value
Maintenance cycle		0
Auxiliary	kg	0
Other resources	kg	0
Water consumption	М3	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Material loss	kg	0

Use (B1):

	Unit	Value
No effect	0	0

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	0
Collected as mixed construction waste	kg	0
Reuse	kg	0
Recycling	kg	0
Energy recovery	kg	0
To landfill	kg	0

Transport to waste processing (C2) Capacity Fuel/Energy Туре utilisation (incl. Type of vehicle Distance km Unit Value (I/t) consumption return) % Truck 0 % 0 I/tkm Railway Boat Other

Benefits and loads beyond the system boundaries (D)

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Pro	oduct sta	age	insta	ruction llation age		User stage							End of life stage			
Raw materials	22 Transport	Manufacturing S	Transport 4	Construction/ Installation stage	88 N B1	Maintenance	8 Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction/	C Transport	Waste processing	Disposal 2	Recycling-potential
X	X	X	X	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND.	MND

Environmental impact

Parameter	Unit	A1	A2	А3	A4	A5	C1	C2
GWP	kg CO ₂ -eqv	1,47E-001	1,58E-002	1,72E-004	3,69E-003			
ODP	kg CFC11 -eqv	4,27E-009	0,00E+000	2,10E-011	0,00E+000			
POCP	kg C ₂ H ₄ -eqv	1,15E-004	3,90E-005	1,28E-006	1,00E-005			
AP	kg SO ₂ -eqv	1,96E-004	1,50E-005	6,30E-007	2,00E-006			
EP	kg PO ₄ ³⁻ -eqv	4,01E-005	6,00E-006	5,42E-008	2,00E-006			
ADPM	kg Sb -eqv	1,96E-007	0,00E+000	4,00E-012	0,00E+000			
ADPE	MJ	6,09E-001	2,07E-001	1,49E-003	4,84E-002			

GWP Global warming potential; **ODP** Depletion potential of the stratospheric ozone layer; **POCP** Formation potential of tropospheric photochemical oxidants; **AP** Acidification potential of land and water; **EP** Eutrophication potential; **ADPM** Abiotic depletion potential for non fossil resources; **ADPE** Abiotic depletion potential for fossil resources

Resource use

Parameter U	nit	A1	A2	А3	A4	A5	C1	C2
RPEE M	1J	8,22E-002	2,71E-004	2,49E-006	8,30E-005			
RPEM M	1J	3,06E-001	8,80E-005	4,76E-005	0,00E+000			
TRPE M	1J	3,88E-001	3,60E-004	5,01E-005	8,30E-005			
NRPEE M	1J	5,74E-001	2,07E-001	1,72E-003	4,82E-002			
NRPEM M	1J	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
TNRPE	1J	5,74E-001	2,07E-001	1,72E-003	4,82E-002			
SM k	g	1,26E-003	0,00E+000	0,00E+000	0,00E+000			
RSF M	1J	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
NRSF M	1J	3,70E-001	0,00E+000	0,00E+000	0,00E+000			
W	1 ³	1,31E-001	1,86E-003	1,23E-005	4,31E-004			

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TRPE Total use of renewable primary energy resources; NRPEE Non renewable primary energy resources used as energy carrier; NRPEM Non renewable primary energy resources used as materials; TNRPE Total use of virgin, non-renewable resources with energy content; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste

Parameter	Unit	A1	A2	А3	A4	A5	C1	C2
HW	kg	1,30E-004	0,00E+000	8,41E-009	0,00E+000			
NHW	kg	5,91E-003	3,90E-005	2,50E-004	9,00E-006			
RW	kg	0,00E+000	0,00E+000	0,00E+000	0,00E+000			

HW Hazardous waste disposed; NHW Non hazardous waste disposed, RW Radioactive waste disposed

End of life - Output flow

Parameter	Unit	A1	A2	А3	A4	A5	C1	C2
CR	kg	0,00E+000	0,00E+000	5,00E-003	0,00E+000			
MR	kg	1,71E-004	0,00E+000	0,00E+000	0,00E+000			
MER	kg	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
EEE	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
ETE	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Additional Norwegian requirements

Electricity

The following data from ecoinvent v3 (June 2012) for Norwegian production mix included import, low voltage is used; Energy/Electricity country mix/Low voltage/Market: Electricity, low voltage {NO}| market for | Alloc Def, U. Production of transmission lines, in addition to direct emissions and loss in grid are included. Characterisation factors stated in EN 15804:2012+A1:2013 are used. This gives following greenhouse gas emissions: 24 g CO2-eqv/kWh

Hazardous substances

None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (checked 25.11.2014) substances on the Norwegian Priority list (checked 25.11.2014) and substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations

Indoor air

The product meets the requirements for low pollutant (M1) by EN 15251: 2007 Appendix E. The product has no impact on the indoor environment.

Bibliography

NS-EN ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures

NS-EN ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines NS-EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products

Product Category Rules for Environmental Product Declarations: Institut Bauen und Umwelt e.V. (IBU): Requirements on the EPD for Mineral factory-made mortar. Vold, M and Edvardsen, T, 2013: Weber EPD Generator Background information, Østfoldforskning AS, Fredrikstad, Norge, Nov 2013

epd-norge.no	Program holder and publisher	Phone:	+47 23 08 80 00
epu-norge.no	The Norwegian EPD Foundation		_
The Norwegian EPD Foundation	P.O.Box 5250 Majorstuen	email:	post@epd-norge.no
<u> </u>	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 22 88 77 00
Sweber SAINT-GOBAIN	Saint-Gobain Byggevarer as	Fax:	+47 22 64 54 54
	P.O. Box 216 Alnabru	email:	info(at)weber-norge.no
	0614 Oslo, Norway	web:	www.weber-norge.no
Ostfoldforskning	Author of the Life Cycle Assessment	Phone:	+47 69 35 11 00
	Østfoldforskning AS	Fax:	+47 69 34 24 94
	Stadion 4	email:	post@ostfoldforskning.no
	1671 Kråkerøy, Norway	web:	www.ostfoldforskning.no