
WESTBOND N9000 CARPET TILE

FORBO FLOORING SYSTEMS TEXTILE FLOOR COVERING

FLOORING SYSTEMS

Westbond carpet tiles are synonymous with total flexibility and sophistication. Blending yarns to order and manufacturing premium quality fusion bonded tiles in an almost infinite number of colourways, with no minimum order quantity. Westbond allows customers to take control of the process of designing luxurious, bespoke carpet tiles with exceptionally heavy pile weights for the most prestigious installations.

Forbo was the first flooring manufacturer to publish a complete Life Cycle Assessment (LCA) report verified by CML in 2000. In addition, Forbo is now publishing Environmental Product Declarations (EPD) for all products including full LCA reports. This EPD uses recognized flooring Product Category Rules and includes additional information to show the impacts on human health and eco-toxicity. By offering the complete story, we hope that our stakeholders will be able to use this document as a tool that will translate the environmental performance of Westbond N9000 carpet tiles into true value and benefits for all our customers and stakeholders alike.

For more information visit: www.forbo-flooring.com

Westbond N9000 Carpet Tile Textile Floor Covering

Environment

According to ISO 14025 & EN 15804

This declaration is an environmental product declaration in accordance with ISO 14025. This EPD does not guarantee that any performance benchmarks, including environmental performance benchmarks, are met. EPDs are intended to compliment Type I environmental performance labels. EPDs provide LCA-based information and additional information on the environmental aspects of products and assist purchasers and users to make informed comparisons between products. EPDs are not comparative assertions. EPDs encourage improvement of environmental performance and provide information for assessing the environmental impacts of products over their life cycle. EPDs not based on an LCA covering all life cycle stages, or based on a different PCR, are examples of declarations that have limited comparability. EPDs from different programs may not be comparable.

[UL Environment					
PROGRAM OPERATOR		333 Pfingsten Road				
	Northbrook, IL 60611					
	Forbo Flooring B.V.					
DECLARATION HOLDER	Industrieweg 12					
DECEARATION TOEDER	P.O. Box 13					
	NL-1560 AA Krommenie					
DECLARATION NUMBER	12CA64879.116.1					
DECLARED PRODUCT	Westbond N9000					
REFERENCE PCR	Flooring: Carpet, Resilient, Laminate,	Ceramic, and Wood (NSF 2012)				
DATE OF ISSUE	23 July 2013					
PERIOD OF VALIDITY	5 Years					
	Product definition and information about building physics					
	Information about basic material and the material's origin					
	Description of the product's manufacture					
CONTENTS OF THE DECLARATION	Indication of product processing					
DECLARATION	Information about the in-use conditions					
	Life cycle assessment results					
	Testing results and verifications					
The PCR review was condu	cted by:	NSF International				
THE FORTEVIEW Was conducted by.		Accepted by PCR Review Panel				
		ncss@nsf.org				
This declaration was independently verified in accordance with ISO 14025 and EN 15804 by Underwriters Laboratories		Acute tem.				

 □ INTERNAL
 ☑ EXTERNAL
 Loretta Tam, ULE EPD Program Manager

 This life cycle assessment was independently verified in accordance with ISO 14044, EN 15804 and the reference PCR by:
 Image: Constant of the second secon

odbo

According to ISO 14025 & EN 15804

Westbond N9000 Carpet Tile Textile Floor Covering

Product Definition

Product Classification and Description

This declaration covers Westbond N9000. Westbond N9000 is a fusion bonded textile floor covering complying with all the requirements of the EN1307 Class 33 Specification. Fusion bonding is a sophisticated method of carpet tile manufacture where individual yarn pile is bonded onto the backing material to make an extremely dense and luxurious product. Each tuft is individual and a high proportion of the yarn is in the wear surface providing a beautiful, rich, velour carpet tile which gives an excellent broadloom appearance.

All Westbond carpet tiles utilize a mixed vinyl waste backing which contains up to 74% pre-consumer recycled content, including PVC waste streams from our competitors, thereby decreasing the amount of waste going to landfill from the flooring industry as a whole. All Westbond N9000 is manufactured using renewable electricity.

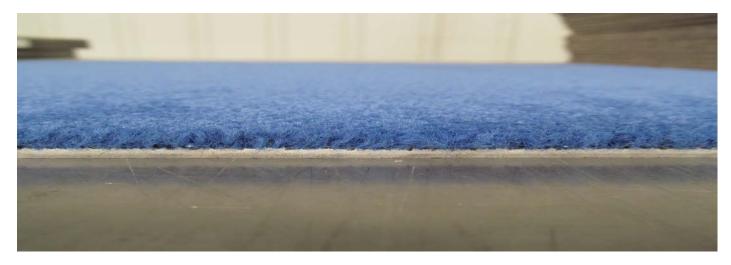


Figure 1 : Illustration of Westbond N9000

Range of application

Westbond N9000 is classified in accordance with EN1307 to be installed in the following use areas defined in EN-ISO 10874:

According to ISO 14025 & EN 15804

Product Standards

The products considered in this EPD have the following technical specifications:

o Meets or exceeds all technical requirements EN1307 Class 33

Westbond N9000 meet the requirements of EN 14041 **Essential characteristics** EN 13501-1 Reaction to fire Bfl - s1 EN 13893 DS: ≥ 0.30 Slip resistance Static dissipative $<1 \times 10^{9} \Omega$ ISO 10965 EN1815 Body voltage < 2 kV EN 985 Castor chair test >2.4

Accreditations

- ISO 9001 Quality Management System
- ISO 14001 Environmental Management System

OUALITY SYSTEM AND ENVIRON-MENTAL MANAGEMENT SYSTEM DS/EN ISO 9001 DS/EN ISO 14001

Delivery Status

Table 1: Specification of delivered product

Characteristics	Nominal Value	Unit
Product thickness	9mm	mm
Product Weight	4000	g/m²
Tile size	50 x 50	cm

According to ISO 14025 & EN 15804

Material Content

Material Content of the Product

Table 2: Composition of Westbond N9000 Component Material Availability Amount [%] Origin Carpet Pile Nylon 6.6 Non renewable 23.75% UK Substrate **Glass Tissue** Non renewable 1.50% Finland Plasticizer DINP Non renewable 6.28% Europe Backing Mixed vinyl waste Recycled material 42.50% Europe Polymer PVC Non renewable 14.80% Europe Fire retardant Non renewable 5.88% Aluminium hydroxide Europe Filler Abundant mineral 3.72% Calcium carbonate Europe Antistat Antistatic agent Non renewable 1.37% Europe Additives Various chemicals Non Renewable 0.20% Europe

Production of Main Materials

Nylon 6.6 : Synthethic yarn made from the condensation reaction of hexamethylene diamibe and adipic acid. Forms the pile surface of N9000 and gives excellent aestheics combined with durability

Glass Tissue : A non woven sheet material comprising chopped glass fiber filaments bound together with a binder imparts dimensional stability and lay flat properties.

DINP: Plasticiser manufactured by the reaction of phthalic anhydride and alcohol. Placticiser is added to increase flexibility, durability and longevity of the floor covering.

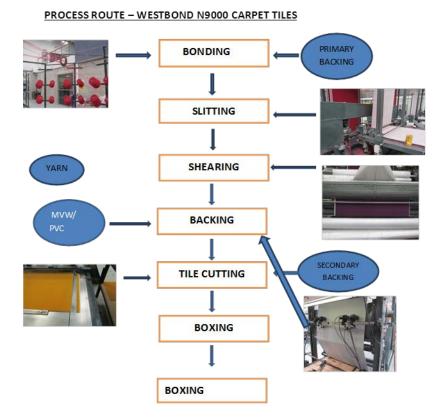
Mixed vinyl waste: Blend of waste carpet and vinyl floor coverings, which gives approximately 42.5% recycled content by weight in the finished tile product.

PVC: Polymer which is manuafctured by the polymerisation of vinyl chloride monomer.

Aluminium hydroxide: Fire retardent filler obtained by extracting alumina hydroxide from Bauxite which is naturally occuring in the Earth's surface. Imparts fire retardence of Westbond N9000

Calcium carbonate: An abundant mineral found in all parts of the world as the chief substance in rocks (i.e., marble and limestone). It can be ground to varying particle sizes and is widely used as filler.

Antistatic agent: A low volatility product combining antistatic performance with effective viscosity depressing action.


Various chemicals: Minor components including, viscosity depressents, antstatic agents, heat stabilisers

According to ISO 14025 & EN 15804

Production of the Floor Covering

Figure 2 : Production process of Westbond N9000

Westbond N9000 is a cut pile product produced through our Fusion bonding process. The nylon yarn is cut into individual tufts, packed to stand vertically (this method ensures that a high proportion of the yarn is in the wear surface) before being joined with a primary backing and adhesive. This is then repeated prior to the roll being slit in the middle to form 2 rolls, tops and bottoms. The rolls are sheared to give a crisp surface appearance. Finally the recycled backing (mixed vinyl waste) is adhered on and the rolls are cut into tiles prior to boxing and dispatch.

Health, Safety and Environmental Aspects during Production

• ISO 14001 Environmental Management System

Production Waste

All product rejected at final inspection stage is either re-cycled through the manufacturing process or re-used externally. Incoming packaging materials are collected, separated and recycled.

According to ISO 14025 & EN 15804

Delivery and Installation of the Floor Covering

Delivery

A worldwide distribution by truck and container ship is utilized. On average every square meter of Westbond N9000 is transported as follows:

0	Transport distance 40 t truck	290 km
0	Transport distance 7.5 t truck	84 km
0	Capacity utilization trucks (including empty runs)	85 %
0	Transport distance Ocean ship	0km
0	Capacity utilization Ocean ship	48%

Although a worldwide distribution is taken into account the average distance by Ocean ship is negligible.

Installation

During the installation of Westbond N9000, an average of 4% of the material becomes installation waste. For the installation of Westbond N9000 tiles 0.25 kg/m² of adhesive is required. Waste during the installation process may be recycled as floor covering through the manufacturers' facilities or thermally recycled in a waste incineration plant. The majority of Westbond N9000 tile is sold in UK / Europe, the European electricity grid mix is used in the calculations for the energy recovery during incineration.

Health, Safety and Environmental Aspects during Installation

Forbo flooring recommends the use of (low) zero emission adhesives for installing Westbond N9000.

Waste

Waste during the installation process may be recycled as floor covering through the manufacturers' facilities or thermally recycled in a waste incineration plant. Since the major part of Westbond N9000 is sold in UK / Europe, the European electricity grid mix is used in the calculations for the energy recovery during incineration.

Packaging

Cardboard tile boxes, wooden pallets and PE-film can be collected separately and should be used in a local recycling process. In the calculation model, 100% incineration is taken into account for which there is a credit received.

Use Stage

The service lifetime of a floor covering for a certain application on a floor is too widespread to give one common number. For this EPD model the reference service lifetime (RSL) is set to one year. This means that all impacts for the use phase are based on the cleaning and maintenance model for one year. Depending on the area of use, the technical lifetime advised by the manufacturer and the estimated time on the floor by the customer, the service lifetime can be determined. The use phase impacts should be calculated with the foreseen service life to arrive at the total environmental impact.

According to ISO 14025 & EN 15804

Cleaning and Maintenance

Level of use	Cleaning Process	Cleaning Frequency	Consumption of energy and resources	
	Vacuuming	Daily	Electricity	
Commercial/Residential/Industrial	Spot/spill clean	As spill occcurs	Spotting agent	
	Dry fusion clean	Four times each year	Hot water	
	Hot water extraction	Four times each year	Neutral detergent	

For the calculations the following cleaning regime is considered:

- Dry cleaning with a 1.5 kW vacuum cleaner for 0.21 min/m² every day. This equates to 1.92 kWh/m²*year.
- Four times a year wet cleaning with 0.062 l/m² water and 0.0008 kg/m² detergent. This result in the use of 0.248 l/m²*year water and 0.0032 kg/m²*year detergent. The wet cleaning takes place without power machine usage. The waste water treatment of the arising waste water from cleaning is considered (Data source from Forbo GaBi model).

The cleaning regime that is recommended in practice will be highly dependent on the use of the premises where the floor covering is installed. In high traffic areas more frequent cleaning will be needed compared to areas where there is low traffic. The use of an entrance mat of at least four steps will reduce the cleaning frequency.

The cleaning regime used in the calculations is suitable for high traffic areas.

Prevention of Structural Damage

All newly laid floor covering should be covered and protected with a suitable non-staining protective covering if other building activities are still in progress.

Health Aspects during Usage

Westbond N9000 complies with:

• AgBB requirements

End of Life

The deconstruction of installed Westbond N9000 from the floor is a manual process. For the end of life stage, 100% incineration is taken into account, since the vast majority of the countries in which Westbond N9000 are sold have a non landfill policy. The average distance to an incineration facility in the calculations is 200 km by truck.

According to ISO 14025 & EN 15804

Life Cycle Assessment

A full Life Cycle Assessment has bee carried out according to ISO 14040 and ISO 14044.

The following Life Cycle Stages are assessed :

- Production Stage (Raw material acquisition, transportation to Manufacturing and Manufacturing)
 - o Transport Gate to User
 - Installation Stage
 - o Use Stage
 - o End of Life Stage

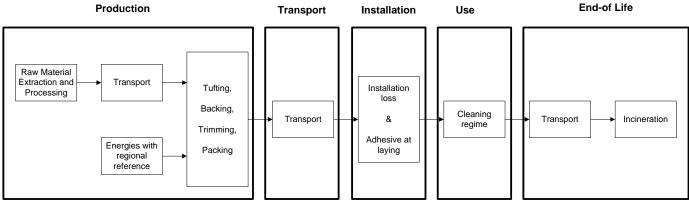


Figure 3: Flow chart of the Life Cycle Assessment

Description of the Declared Functional Unit

The functional unit is one square meter of installed product and the use stage is considered for one year of service life.

Cut off Criteria

The cut-off criteria shall be 1% of renewable and non-renewable primary energy usage and 1% of the total mass of the unit process. The total neglected input flows per module shall be a maximum of 5% of energy usage and mass.

In practice, in this assessment, all data from the production data acquisition are considered, i.e. all raw materials used as per formulation, use of water, electricity and other fuels, the required packaging materials, and all direct production waste. Transport data on all considered inputs and output material are also considered.

Allocations

In the present study some allocations have been made. Detailed explanations can be found in the chapters below.

Co-product allocation

No co-product allocation occurs in the product system.

Allocation of multi-input processes

The Production and End of Life stage include incineration plants. In these processes different products are treated together within a process. The allocation procedures followed in these cases are based on a physical classification of the mass flows or calorific values.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Credits from energy substitution are allocated to the production stage, because the gained energy from energy substitution is lower than the energy input in this stage. The same quality of energy is considered.

Allocation procedure of reuse, recycling and recovery

The installation waste and end of life waste is fed into incineration processes. Incineration processes include cogeneration processes which give thermal and power energy as outputs. It is assumed that this recovered energy offsets that produced by the European average grid mix and thermal energy generation from natural gas.

Description of the allocation processes in the LCA report

The description of allocation rules in of this LCA report meets the requirements of the PCR.

LCA Data

As a general rule, specific data derived from specific production processes or average data derived from specific production processes have been used as the first choice as a basis for calculating an EPD.

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG has been used. All relevant LCA datasets are taken from the GaBi 6 software database. The datasets from the database GaBi are documented in the online documentation. To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

Data Quality

The requirements for data quality and LCA data correspond to the specifications of the PCR.

Foreground data are based on 1 year averaged data (year 2012). The reference ages of LCA datasets vary but are given in the table in the Appendix. The time period over which inputs to and outputs from the system is accounted for is 100 years from the year for which the data set is deemed representative. The technological LCA of the collected data reflects the physical reality of the declared product. The datasets are complete, conform to the system boundaries and the criteria for the exclusion of inputs and outputs and are geographical representative for the supply chain of Forbo flooring.

For life cycle modeling of the considered products the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used. All relevant LCA datasets are taken from the GaBi 6 software database. The last revision of the used data sets took place within the last 10 years.

System Boundaries

<u>Production Stage</u> includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage.

<u>Transport and Installation Stage</u> includes provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. These information modules also include all impacts and aspects related to any losses during this construction stage (i.e. production, transport, and waste processing and disposal of the lost products and materials). For the transportation a worldwide distribution is considered.

<u>Use Stage</u> includes provision and transport of all materials, products and related energy and water use, as well as waste processing up to the end-of-waste state or disposal of final residues during this part of the use stage. These information modules also include all impacts and aspects related to the losses during this part of the use stage (i.e. production, transport, and waste processing and disposal of the lost products and materials).

According to ISO 14025 & EN 15804

<u>End of Life Stage</u> includes provision and all transports, provision of all materials, products and related energy and water use. It also includes any declared benefits and loads from net flows leaving the product system that have not been allocated as co-products and that have passed the end-of-waste state in the form of reuse, recovery and/or recycling potentials.

Power mix

The selection of LCA data for the electricity generation is in line with the PCR.

The products are manufactured in Cortonwood, the United Kingdom. The GaBi 6 Hydropower, Wind power and Biomass datasets have therefore been used (reference year 2009). The energy supplier is providing Forbo with a certificate every year.

CO₂-Certificates

No CO₂-certificates are considered in this study.

Life Cycle Inventory Analysis

The total primary energy for one square meter installed Westbond N9000 is presented in table 3 with their specific energy resources.

Non-renewable primary energy by	Unit	Total Life	Total Life	Production		Installation	Use	End of
resources	onne	cycle (MJ)	cycle (%)	1 roudollon	manoport	motunation	(1 yr)	Life
Total non-renewable primary energy	MJ	450.48	100%	448.71	0.74	7.17	5.84	-11.99
Crude oil	MJ	179.37	39.8%	169.77	0.68	2.94	0.63	5.34
Hard coal	MJ	20.79	4.6%	17.86	0	0.23	0.98	1.72
Lignite	MJ	19.99	4.4%	18.07	0	0.22	0.74	0.95
Natural gas	MJ	202.63	45.0%	217.46	0.06	3.62	1.74	-20.24
Uranium	MJ	27.7	6.1%	25.55	0	0.16	1.74	0.25
Renewable primary energy by	Unit	Total Life	Total Life	Production	Transport	Installation	Use	End of
resources		cycle (MJ)	cycle (%)				(1 yr)	Life
Total renewable primary energy	MJ	8.12	100%	7.7	0.03	0.1	0.79	-0.5
Geothermical	MJ	0.22	2.7%	0.23	0	0	0.01	-0.01
Hydro power	MJ	2.75	33.9%	2.63	0	0	0.32	-0.2
Solar energy	MJ	2.51	30.9%	2.37	0.03	0.06	0.23	-0.17
Wind power	MJ	2.64	32.5%	2.48	0	0.04	0.23	-0.11

Table 3: Primary energy for all life cycle stages for Westbond N9000 for one year

The renewable and non-renewable primary energy is mainly determined by the production stage for a one year usage; within the production stage the main contributors are the raw material production and energy generation.

According to ISO 14025 & EN 15804

Waste and non-renewable resource consumption

In table 4 the non-renewable resource consumption and waste production are shown for all life cycle stages for a one year usage.

Wastes	Unit	Total Life cycle	Production	Transport	Installation	Use (1yr)	End of Life
Hazardous waste	[kg]	2.30E-03	1.29E-03	0.00E+00	1.01E-03	0.00E+00	0.00E+00
Non-hazardous waste	[kg]	2.90E+01	2.55E+01	2.63E-03	4.57E-01	1.12E+00	1.97E+00
Radioactive waste	[kg]	1.02E-02	9.40E-03	1.03E-06	1.29E-04	7.12E-04	-7.09E-05
Resources	Unit	Total Life cycle	Production	Transport	Installation	Use (1yr)	End of Life
Nonrenewable resources	[kg]	33.08	27.19	0	0.5	1.13	4.26

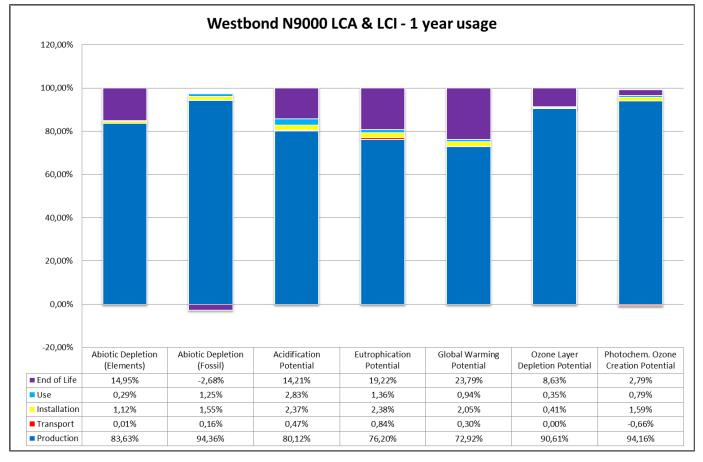
Table 4: Waste categories and non-renewable resources for Westbond N9000 (one year)

Life Cycle Assessment

In table 5 the environmental impacts for one lifecycle are presented for Westbond N9000. In table 6 the environmental impacts are presented for all the lifecycle stages.

Impact Category : CML 2001 – Nov. 2010	Westbond N9000	Unit
Global Warming Potential (GWP 100 years)	3.43E+01	kg CO2-Equiv.
Ozone Layer Depletion Potential (ODP. steady state)	6.55E-07	kg R11-Equiv.
Acidification Potential (AP)	4.76E-02	kg SO2-Equiv.
Eutrophication Potential (EP)	6.07E-03	kg Phosphate-Equiv.
Photochem. Ozone Creation Potential (POCP)	1.14E-02	kg Ethene-Equiv.
Abiotic Depletion Potential Elements (ADPE)	2.16E-05	kg Sb-Equiv.
Abiotic Depletion Potential Fossil (ADPF)	4.37E+02	[MJ]

Table 6: Results of the LCA – Environmental impact for Westbond N9000 (one year)


Impact Category : CML 2001 – Nov. 2010	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Global Warming Potential	kg CO2-Equiv.	2.50E+01	1.02E-01	7.03E-01	3.22E-01	8.15E+00
Ozone Layer Depletion Potential	kg R11-Equiv.	5.94E-07	9.31E-13	2.67E-09	2.30E-09	5.66E-08
Acidification Potential	kg SO2-Equiv.	3.81E-02	2.22E-04	1.13E-03	1.35E-03	6.76E-03
Eutrophication Potential	kg PSO4-Equiv.	4.63E-03	5.07E-05	1.44E-04	8.29E-05	1.17E-03
Photochem. Ozone Creation Potential	kg Ethene-Equiv.	1.09E-02	-7.67E-05	1.84E-04	9.17E-05	3.24E-04
Abiotic Depletion Elements	kg Sb-Equiv.	1.81E-05	1.99E-09	2.42E-07	6.36E-08	3.23E-06
Abiotic Depletion Fossil	MJ	4.35E+02	7.38E-01	7.16E+00	5.78E+00	-1.23E+01

The relative contribution of each process stage to each impact category for Westbond N9000 is shown in the figure 4.

According to ISO 14025 & EN 15804

Figure 4: Relative contribution of each process stage to each impact category for Westbond N9000 for a one year usage.

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In all of the impact categories the production stage has the main contribution to the overall impact with the raw material supply as the key contributor with a share of 95 – 99%, except for POCP where the raw materials account for 57% of the total. In all cases this contribution is caused by the manufacturing of Polyamide 6, PVC and to a lesser extent DINP. For POCP the share of the Forbo manufacturing stage is 43%, caused by the use of energy during the manufacturing of Westbond N9000.

The transport, installation and use phase are contribute little to the overall impact, for all categories every single measurement is to a greater or lesser extent below 3%.

Except for ADPF every category has got a significant share in the impacts at the End of Life stage. This is caused by the incineration of 100% of the deconstructed floor that is considered in the calculations. For ADPF there is a credit for the waste to energy conversion.

According to ISO 14025 & EN 15804

Additional Environmental Information

To be fully transparant Forbo Flooring does not only want to declare the environmental impacts required in the PCR, but also the impacts on human health and eco-toxicity. Furthermore the outcome of the calculations according to the european Standard EN15804 are published in this section.

Toxicity

For this calculations the USEtoxTM model is used as being the globally recommended preferred model for characterization modelling of human and eco-toxic impacts in LCIA by the United Nations Environment Programme SETAC Life Cycle Initiative.

According to the "ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European context" the recommended characterization models and associated characterization factors are classified according to their quality into three levels:

- o Level I (recommended and satisfactory),
- o Level II (recommended but in need of some improvements)
- Level III (recommended, but to be applied with caution).

A mixed classification sometimes is related to the application of the classified method to different types of substances. USEtoxTM is classified as Level II / III, unlike for example the CML impact categories which are classified as Level I.

Table 7: Results of the LCA – Environmental impacts one lifecycle (one year) – Westbond N9000

Impact Category : USEtox	Westbond N9000	Unit
Eco toxicity	6.01E-01	PAF m3.day
Human toxicity, cancer	9.01E-09	Cases
Human toxicity, non-canc.	4.92E-07	Cases

In the following table the impacts are subdivided into the lifecycle stages.

Table 8: Results of the LCA - Environmental impact for Westbond N9000 (one year)

Impact Category : USEtox	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Eco toxicity	PAF m3.day	5.18E-01	6.66E-03	1.09E-02	2.78E-02	3.76E-02
Human toxicity, cancer	cases	7.97E-09	2.78E-11	1.75E-10	2.66E-10	5.72E-10
Human toxicity, non-canc.	cases	3.24E-07	1.30E-08	1.75E-08	5.50E-08	8.22E-08

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

All the Toxicity categories are dominated by the production stage in which the raw materials are having a big impact with a share of around 93-99%. The raw materials with the highest impact are Polyamide 6 and PVC.

The transport and installation stage are both having a minor impact on the total impact compared to the other life cycle stages. For the transport life cycle the contribution comes completely from the Diesel that is used for the trucks. In the installation stage the adhesive is the main contributor.

The use stage is contributing 3 - 11% of the total, mainly caused by the use of electricity needed for vacuuming the floor. The cleaning regime considered in the calculation is an assumption, in practice this will be dependent on the use of the premises where the floor covering is installed.

At the End of Life stage the main contributor is the 100% of the floor that is incinerated after it is deconstructed. The

According to ISO 14025 & EN 15804

possibility to recycle the post-consumer waste is not taken into account for these calculations, because this is not yet widely practiced.

EN15804 Results

In this section the calculations have been conducted and verified according to the requirements of the European Standard EN 15804. In addition, calculations followed the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report", however, Part A was not included as a part of the verification.

Table 9: Results of the LCA - Environmental impact for Westbond N9000 (one year)

		Manufacturing	Insta	lation	Use (1yr)	End of Life			Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	D
GWP	[kg CO ₂ -Equiv.]	2.50E+01	1.02E-01	8.07E-01	3.22E-01	0.00E+00	1.09E-01	9.77E+00	-1.83E+00
ODP	[kg CFC11-Equiv.]	5.94E-07	9.31E-13	2.69E-09	2.30E-09	0.00E+00	1.90E-12	5.68E-08	-2.78E-10
AP	[kg SO ₂ -Equiv.]	3.81E-02	2.22E-04	1.31E-03	1.35E-03	0.00E+00	5.46E-04	8.58E-03	-2.54E-03
EP	[kg PO ₄ ³⁻ - Equiv.]	4.63E-03	5.07E-05	1.59E-04	8.29E-05	0.00E+00	1.26E-04	1.26E-03	-2.30E-04
POCP	[kg Ethen Equiv.]	1.09E-02	-7.67E-05	2.02E-04	9.17E-05	0.00E+00	6.08E-05	5.45E-04	-3.00E-04
ADPE	[kg Sb Equiv.]	1.81E-05	1.99E-09	2.48E-07	6.36E-08	0.00E+00	4.05E-09	3.32E-06	-9.70E-08
ADPF	[MJ]	4.35E+02	7.38E-01	8.89E+00	5.78E+00	0.00E+00	1.51E+00	1.47E+01	-3.03E+01
	warming potential; ODP = D								Formation

Table 10: Results of the LCA - Resource use for Westbond N9000 (one year)

		Manufacturing	Instal	lation	Use (1yr)		End of Life		Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	D
PERE	[MJ]	-	-	-	-	-	-	-	-
PERM	[MJ]	-	-	-	-	-	-	-	-
PERT	[MJ]	8.46E+00	6.88E-02	1.67E-01	7.88E-01	4.24E-02	6.87E-02	2.44E-01	-8.31E-01
PENRE	[MJ]	-	-	-	-	-	-	-	-
PENRM	[MJ]	-	-	-	-	-	-	-	-
PENRT	[MJ]	4.71E+02	1.75E+00	8.42E+00	5.84E+00	2.55E-01	1.75E+00	1.40E+01	-2.73E+01
SM	[kg]	0.00E+00	-	-	-	-	-	-	-
RSF	[MJ]	1.61E-03	1.11E-05	2.22E-04	9.54E-05	5.20E-06	1.11E-05	0.00E+00	-3.04E-04
NRSF	[MJ]	1.68E-02	1.16E-04	1.48E-03	9.99E-04	5.45E-05	1.16E-04	0.00E+00	-3.19E-03
FW	[kg]	6.98E+01	7.63E-02	1.47E+00	5.28E+00	1.14E-01	7.62E-02	-1.64E+00	-2.58E+00
PERE = Use of rer	newable prim	ary energy excluding renew	vable primary energ	y resources used a	s raw materials; PE	RM = Use of rer	newable primary en	ergy resources used	as raw materials; PERT

= Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; SFR = Use of non renewable secondary fuels; FW = Use of not fresh water

Table 11: Results of the LCA – Output flows and Waste categories for Westbond N9000 (one year)

		Manufacturing	Transport	Installation	Use (1yr)		End of L	ife/credits	
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	D
HWD	[kg]	1.29E-03	0.00E+00	1.01E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	2.55E+01	2.63E-03	4.57E-01	1.12E+00	0.00E+00	5.36E-03	3.18E+00	-1.22E+00
RWD	[kg]	9.40E-03	1.03E-06	1.29E-04	7.12E-04	0.00E+00	2.09E-06	7.12E-04	-7.85E-04
CRU	[kg]	-	-	-	-	-	-	-	-
MFR	[kg]	-	-	-	-	-	-	-	-
MER	[kg]	-	-	-	-	-	-	4.09E+00	-
EE Power	[MJ]	-	-	1.16E-01	-	-	-	2.78E+00	-
EE Thermal energy	[MJ]	-	-	1.43E+00	-	-	-	3.42E+01	-
HWD = Hazardous waste d			aste disposed; RWI	D = Radioactive was	e disposed; CRU =	Components for re	e-use; MFR = Mate	rials for recycling; N	MER = Materials

Interpretation

The interpretation of the environmental impacts calculated according to EN 15804 are similar to the interpretation according to ISO 14025. A more detailed interpretation is published in the appendix.

According to ISO 14025 & EN 15804

Westbond N9000 Carpet Tile Textile Floor Covering

References

GABI 6 2012	PE INTERNATIONAL AG; GaBi 6: Software-System and Database for Life Cycle
GABI 6 2012D	Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012. GaBi 6: Documentation of GaBi 6: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012. http://documentation.gabi-software.com/
NSF International	Product Category Rule for Environmental Product Declarations
May 22, 2012	Flooring: Carpet, Resilient, Laminate, Ceramic, Wood
UL ENVIRONMENT	UL Environment's Program Operator Rules
ERFMI 2008	Final report: LCA, Environmental Information Sheet and Eco design Model of Resilient Flooring by order of ERFMI, PE International, 2008
IBU 2011	PCR - Part A: Calculation rules for the Life Cycle Assessment and Requirements on the Background Report, Institut Bauen und Umwelt e.V.
PE 2012	Description of Selected Impact Categories, PE International AG, 2012
ILCD Handbook: General	European Commission - Joint Research Centre - Institute for Environment and
guide for Life Cycle	Sustainability: International Reference Life Cycle Data System (ILCD) Handbook -
Assessment - Detailed	General guide for Life Cycle Assessment - Detailed guidance. First edition March
guidance	2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union; 2010
STANDARDS AND LAWS	
DIN EN ISO 14044	Environmental management - Life cycle assessment - Requirements and guidelines (ISO 14044:2006); German and English version EN ISO 14044
ISO 14025 2006	DIN EN ISO 14025: Environmental labels and declarations — Type III environmental declarations — Principles and procedures
ISO 14040 2006	Environmental management - Life cycle assessment - Principles and framework (ISO 14040); German and English version EN ISO 14040
CEN/TR 15941	Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941
EN 15804	EN 15804: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products
ISO 24011	Resilient floor coverings - Specification for plain and decorative linoleum
CPR	REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonized conditions for the marketing of construction products and repealing Council Directive 89/106/EEC
EN-ISO 10874	Resilient, textile and laminate floor coverings - Classification

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Appendix

The following life cycle assessment study of the company Forbo Flooring, a manufacturer of resilient floor coverings, has been performed by Forbo Flooring under support of PE International and has been conducted according to the requirements of the European Standard /EN 15804/ following the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report" /IBU 2011/.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

LCA Report for Environmental Product Declarations (EPD)

Forbo Flooring

Title of the study: Environmental product declarations of Westbond N9000 Carpet Tile Part of the project: Life Cycle assessment (LCA)

LCA study conducted by: Forbo Flooring Industrieweg 12 1566 JP Assendelft The Netherlands July 2013

Supported by: PE INTERNATIONAL AG

Environment

U

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Authors:

Floris Zeitler, Forbo Supported by Peter Shonfield, Julia Goerke

Forbo Flooring BV	Industrieweg 1: 1566 JP Assen Tel. Fax E-mail Internet	2 idelft, The Netherlands +31 (0) 75 6477477 +31 (0) 75 6477707 floris.zeitler@forbo.com www.forbo-flooring.com
Supported by:	PE INTERNAT Hauptstraße 1 ⁴ D – 70771 Leir Tel. Fax E-mail Internet	

Nomenclature

Abbreviation ADP AP BLBSB CRU EE EP EPD FW GWP HWD LCA MER MFR NRSF ODP	Explanation Abiotic Depletion Potential Acidification Potential Benefits and Loads Beyond the System Boundary Components for re-use Exported energy per energy carrier Eutrophication Potential Environmental Product Declaration Use of net fresh water Global Warming Potential Hazardous waste disposed Life Cycle Assessment Materials for energy recovery Materials for recycling Use of non-renewable secondary fuels Ozone Layer Depletion Potential
PENRE	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials
PENRM PENRT	Use of non-renewable primary energy resources used as raw materials
PERE	Total use of non-renewable primary energy resources Use of renewable primary energy excluding renewable primary energy resources used as raw
FERE	materials
PERM PERT PCR POCP RSF RSL RWD SM	Use of renewable primary energy resources used as raw materials Total use of renewable primary energy resources Product Category Rules Photochemical Ozone Creation Potential Use of renewable secondary fuels Reference Service Life Radioactive waste disposed Use of secondary material

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

General

The present LCA study of the company Forbo Flooring, a manufacturer of resilient floor coverings, has been performed by Forbo Flooring under support of PE International and has been conducted according to the requirements of the European Standard EN15804 following the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report". The LCA report was sent to verification on 07/22/13.

Scope

This document is the LCA report for the "Environmental Product Declaration" (EPD) of "Westbond N9000 Carpet Tile".

The provision of an LCA report is required for each EPD of the EPD-program holder (UL Environment). This document shows how the calculation rules were applied and describes additional LCA information on the Life Cycle Assessment in accordance with the requirements of ISO 14040 series.

Content, Structure and Accessibility of the LCA report

The LCA report provides a systematic and comprehensive summary of the project documentation supporting the verification of an EPD.

The report documents the information on which the Life Cycle Assessment is based, while also ensuring the additional information contained within the EPD complies with the requirements of ISO 14040 series.

The LCA report contains all of the data and information of importance for the details published in the EPD. Care is been given to all explanations as to how the data and information declared in the EPD arises from the Life Cycle Assessment.

The verification of the EPD is aligned towards the structure of the rule document based on ISO 14025 and EN15804.

Goal of the Study

The reason for performing this LCA study is to publish an EPD based on EN 15804 and ISO 14025.

This study contains the calculation and interpretation of the LCA results for Westbond N9000 Carpet Tile complying with EN 1307.

Manufactured by:

Forbo Flooring UK Ltd. Cortonwood Drive Cortonwood Business Park Brampton, Barnsley S73 0UF Uinted Kingdom

The following life cycle stages were considered:

- Product stage
- Transport stage
- Installation stage
- Use stage
- End-of-life stage
- Benefits and loads beyond the product system boundary

The main purpose of EPD is for use in business-to-business communication. As all EPD are publicly available on the website of UL Environment and therefore are accessible to the end consumer they can also be used in business-to-consumer communication.

The intended use of the EPD is to communicate environmentally related information and LCA results to support the assessment of the sustainable use of resources and of the impact of construction works on the environment.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Scope of the study

Declared / Functional Unit

The declaration refers to the declared/functional unit of 1m² installed flooring product.

Declaration of Construction Products Classes

The LCA report refers to a manufacturer declaration of type 1a): Declaration of a specific product from a manufacturer's plant. Westbond N9000 Carpet Tile is produced at the following manufacturing site:

Forbo Flooring UK Ltd. Cortonwood Drive Cortonwood Business Park Brampton, Barnsley S73 0UF Uinted Kingdom

Product Definition

Product Classification and Description

This declaration covers Westbond N9000. Westbond N9000 is a fusion bonded textile floor covering complying with all the requirements of the EN1307 Class 33 Specification. Fusion bonding is a sophisticated method of carpet tile manufacture where individual yarn pile is bonded onto the backing material to make an extremely dense and luxurious product. Each tuft is individual and a high proportion of the yarn is in the wear surface providing a beautiful, rich, velour carpet tile which gives an excellent broadloom appearance.

All Westbond carpet tiles utilize a mixed vinyl waste backing which contains up to 74% pre-consumer recycled content, including PVC waste streams from our competitors, thereby decreasing the amount of waste going to landfill from the flooring industry as a whole. All Westbond N9000 is manufactured using renewable electricity.

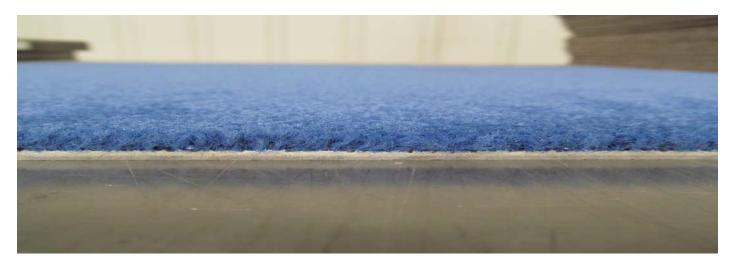
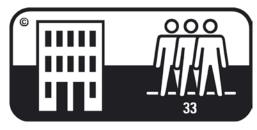


Figure 1 : Illustration of Westbond N9000



Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Range of Applications

Westbond N9000 is classified in accordance with EN1307 to be installed in the following use areas defined in EN-ISO 10874:

Product Standards

The products considered in this EPD have the following technical specifications:

o Meets or exceeds all technical requirements EN1307 Class 33

(6		
Westbond N9000	meet the requireme	ents of
EN 14041	Essential characte	ristics
EN 13501-1	Reaction to fire	BfI-s1
EN 13893	Slip resistance	DS: ≥ 0.30
ISO 10965	Static dissipative	<1 X 10 ⁹ Ω
EN1815	Body voltage	< 2 kV
EN 985	Castor chair test	>2.4

Accreditations

- ISO 9001 Quality Management System
- o ISO 14001 Environmental Management System

Delivery Status

Characteristics	Nominal Value	Unit
Product thickness	9mm	mm
Product Weight	4000	g/m ²
Tile size	50 x 50	cm

Material Content

Component	Material	Availability	Mass %	Origin of raw material
Carpet Pile	Nylon 6.6	Non renewable	23.75%	UK
Substrate	Glass Tissue	Non renewable	1.50%	Finland
Plasticizer	DINP	Non renewable	6.28%	Europe
Backing	Mixed vinyl waste	Recycled material	42.50%	Europe
Polymer	PVC	Non renewable	14.80%	Europe
Fire retardant	Aluminium hydroxide	Non renewable	5.88%	Europe
Filler	Calcium carbonate	Abundant mineral	3.72%	Europe
Antistat	Antistatic agent	Non renewable	1.37%	Europe
Additives	Various chemicals	Non Renewable	0.20%	Europe

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Production of Main Materials

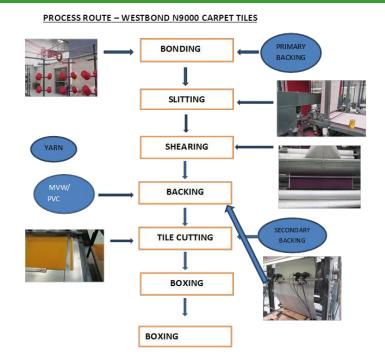
Nylon 6.6 : Synthethic yarn made from the condensation reaction of hexamethylene diamibe and adipic acid. Forms the pile surface of N9000 and gives excellent aestheics combined with durability

Glass Tissue : A non woven sheet material comprising chopped glass fiber filaments bound together with a binder imparts dimensional stability and lay flat properties.

DINP: Plasticiser manufactured by the reaction of phthalic anhydride and alcohol. Placticiser is added to increase flexibility, durability and longevity of the floor covering.

Mixed vinyl waste: Blend of waste carpet and vinyl floor coverings, which gives approximately 42.5% recycled content by weight in the finished tile product.

PVC: Polymer which is manuafctured by the polymerisation of vinyl chloride monomer.


Aluminium hydroxide: Fire retardent filler obtained by extracting alumina hydroxide from Bauxite which is naturally occuring in the Earth's surface. Imparts fire retardence of Westbond N9000

Calcium carbonate: An abundant mineral found in all parts of the world as the chief substance in rocks (i.e., marble and limestone). It can be ground to varying particle sizes and is widely used as filler.

Antistatic agent: A low volatility product combining antistatic performance with effective viscosity depressing action.

Various chemicals: Minor components including, viscosity depressents, antstatic agents, heat stabilisers

Production of the Floor Covering

Figure 2 : Production process of Westbond N9000

Westbond N9000 is a cut pile product produced through our Fusion bonding process. The nylon yarn is cut into individual tufts, packed to stand vertically (this method ensures that a high proportion of the yarn is in the wear surface) before being joined with a primary backing and adhesive. This is then repeated prior to the roll being slit in the middle to form 2 rolls, tops and bottoms. The rolls are sheared to give a crisp surface appearance. Finally the recycled backing (mixed vinyl waste) is adhered on and the rolls are cut into tiles prior to boxing and dispatch.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Health, Safety and Environmental Aspects during Production

ISO 14001 Environmental Management System

Production Waste

All product rejected at final inspection stage is either re-cycled through the manufacturing process or re-used externally. Incoming packaging materials are collected, separated and recycled.

Delivery and Installation of the Floor Covering

Delivery

A worldwide distribution by truck and container ship is utilized. On average every square meter of Westbond N9000 is transported as follows:

0	Transport distance 40 t truck	290 km
0	Transport distance 7.5 t truck	84 km
0	Capacity utilization trucks (including empty runs)	85 %
0	Transport distance Ocean ship	0km
0	Capacity utilization Ocean ship	48%

Although a worldwide distribution is taken into account the average distance by Ocean ship is negligible.

Installation

During the installation of Westbond N9000 an average of 4% of the material becomes installation waste. For the installation of Westbond N9000 tiles 0.25 kg/m² of adhesive is required. Waste during the installation process may be recycled as floor covering through the manufacturers' facilities or thermally recycled in a waste incineration plant. The majority of Westbond N9000 tile is sold in UK / Europe the European electricity grid mix is used in the calculations for the energy recovery during incineration.

Health, Safety and Environmental Aspects during Installation

Forbo flooring recommends the use of (low) zero emission adhesives for installing Westbond N9000.

Waste

Waste during the installation process may be recycled as floor covering through the manufacturers' facilities or thermally recycled in a waste incineration plant. Since the major part of Westbond N9000 is sold in UK / Europe the European electricity grid mix is used in the calculations for the energy recovery during incineration.

Packaging

Cardboard tile boxes, wooden pallets and PE-film can be collected separately and should be used in a local recycling process. In the calculation model 100% incineration is taken into account for which there is a credit received.

Use stage

The service lifetime of a floor covering for a certain application on a floor is too widespread to give one common number. For this EPD model the reference service lifetime (RSL) is set to one year. This means that all impacts for the use phase are based on the cleaning and maintenance model for one year. Depending on the area of use, the technical lifetime advised by the manufacturer and the estimated time on the floor by the customer, the service lifetime can be determined. The use phase impacts should be calculated with the foreseen service life to arrive at the total environmental impact.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Cleaning and Maintenance

Level of use	Cleaning Process	Cleaning Frequency	Consumption of energy and resources	
Commercial/Residential/Industrial	Vacuuming	Daily	Electricity	
Commercial/Residential/moustrial	Spot/spill clean	As spill occcurs	Spotting agent	
	Dry fusion clean Hot water extraction	Four times each year	Hot water Neutral detergent	

For the calculations the following cleaning regime is considered:

- Dry cleaning with a 1.5 kW vacuum cleaner for 0.21 min/m² every day. This equates to 1.92 kWh/m²*year.
- Four times a year wet cleaning with 0.062 l/m² water and 0.0008 kg/m² detergent. This result in the use of 0.248 l/m²*year water and 0.0032 kg/m²*year detergent. The wet cleaning takes place without power machine usage. The waste water treatment of the arising waste water from cleaning is considered (Data source from Forbo GaBi model).

The cleaning regime that is recommended in practice will be highly dependent on the use of the premises where the floor covering is installed. In high traffic areas more frequent cleaning will be needed compared to areas where there is low traffic. The use of an entrance mat of at least four steps will reduce the cleaning frequency.

The cleaning regime used in the calculations is suitable for high traffic areas.

Prevention of Structural Damage

All newly laid floor covering should be covered and protected with a suitable non-staining protective covering if other building activities are still in progress.

Health Aspects during Usage

Westbond N9000 complies with:

• AgBB requirements

End of Life

The deconstruction of installed Westbond N9000 from the floor is a manual process. For the end of life stage, 100% incineration is taken into account, since the vast majority of the countries in which Westbond N9000 are sold have a non landfill policy. The average distance to an incineration facility in the calculations is 200 km by truck.

Life Cycle Assessment

A full Life Cycle Assessment has bee carried out according to ISO 14040 and ISO 14044.

The following Life Cycle Stages are assessed :

- o Production Stage (Raw material acquisition, transportation to Manufacturing and Manufacturing)
- o Transport Gate to User
- o Installation Stage
- o Use Stage
- o End of Life Stage

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

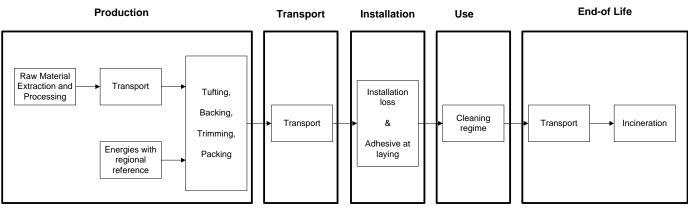


Figure 3 : Flow chart of the Life Cycle Assessment

Description of the declared Functional Unit

The functional unit is one square meter of installed product and the use stage is considered for one year of service life.

Cut off Criteria

The cut-off criteria shall be 1% of renewable and non-renewable primary energy usage and 1% of the total mass of the unit process. The total neglected input flows per module shall be a maximum of 5% of energy usage and mass.

In practice, in this assessment, all data from the production data acquisition are considered, i.e. all raw materials used as per formulation, use of water, electricity and other fuels, the required packaging materials, and all direct production waste. Transport data on all considered inputs and output material are also considered.

LCA Data

As a general rule, specific data derived from specific production processes or average data derived from specific production processes have been used as the first choice as a basis for calculating an EPD.

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, has been used. All relevant LCA datasets are taken from the GaBi 6 software database. The datasets from the database GaBi are documented in the online documentation. To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

Data Quality

The requirements for data quality and LCA data correspond to the specifications of the PCR.

Foreground data are based on 1 year averaged data (year 2012). The reference ages of LCA datasets vary but are given in the table in the Appendix. The time period over which inputs to and outputs from the system is accounted for is 100 years from the year for which the data set is deemed representative. The technological LCA of the collected data reflects the physical reality of the declared product. The datasets are complete, conform to the system boundaries and the criteria for the exclusion of inputs and outputs and are geographical representative for the supply chain of Forbo flooring.

For life cycle modeling of the considered products the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used. All relevant LCA datasets are taken from the GaBi 6 software database. The last revision of the used data sets took place within the last 10 years.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Data set	Region	Reference year
Polyamide 6 Yarn	Germany	2005
PVC waste for recovery	Europe	2006
Calcium carbonate	Germany	2011
DINP	Germany	2010
PVC	Germany	2012
Alumina trihydrate	Global	2011
Additives	Germany	2002
Anti-Static Agent	Europe	2007
Glass tissue	Germany	2010
Water (desalinated; deionised)	Germany	2010
Detergent (ammonia based)	Germany	2006
Adhesive for resilient flooring	Germany	2010
Waste incineration of Westbond N9000 Carpet Tile	Europe	2006
Electricity from Hydro power	The United Kingdom	2009
Electricity from Wind power	The United Kingdom	2009
Electricity from Biomass	The United Kingdom	2009
Power grid mix	Europe	2009
Thermal energy from Natural gas	The United Kingdom	2009
Thermal energy from Natural gas	Europe	2009
Trucks	Global	2010
Municipal waste water treatment (Sludge incineration).	Europe	2011
Container ship	Global	2010
Diesel mix at refinery	Europe	2009
Heavy fuel oil at refinery (1.0wt.% S)	Europe	2009
Polyethylene film	Europe	2005
Corrugated board	Europe	2002
Wooden pallets	Europe	1998

The documentation of the LCA data sets can be taken from the GaBi documentation.

System Boundaries

<u>Production Stage</u> includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage.

<u>Transport and Installation Stage</u> includes provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. These information modules also include all impacts and aspects related to any losses during this construction stage (i.e. production, transport, and waste processing and disposal of the lost products and materials). For the transportation a worldwide distribution is considered.

<u>Use Stage</u> includes provision and transport of all materials, products and related energy and water use, as well as waste processing up to the end-of-waste state or disposal of final residues during this part of the use stage. These information modules also include all impacts and aspects related to the losses during this part of the use stage (i.e. production, transport, and waste processing and disposal of the lost products and materials).

<u>End of Life Stage</u> includes provision and all transports, provision of all materials, products and related energy and water use. It also includes any declared benefits and loads from net flows leaving the product system that have not been allocated as co-products and that have passed the end-of-waste state in the form of reuse, recovery and/or recycling potentials.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Power mix

The selection of LCA data for the electricity generation is in line with the PCR.

The products are manufactured in Bamber Bridge, the United Kingdom. The GaBi 6 Hydropower, Wind power and Biomass datasets have therefore been used (reference year 2009). The energy supplier is providing Forbo with a certificate every year.

CO₂-Certificates

No CO₂-certificates are considered in this study.

Allocations

In the present study some allocations have been made. Detailed explanations can be found in the chapters below.

Co-product allocation

No co-product allocation occurs in the product system.

Allocation of multi-Input processes

The Production and End of Life stage include incineration plants. In these processes different products are treated together within a process. The allocation procedures followed in these cases are based on a physical classification of the mass flows or calorific values.

Credits from energy substitution are allocated to the production stage, because the gained energy from energy substitution is lower than the energy input in this stage. The same quality of energy is considered.

Allocation procedure of reuse, recycling and recovery

The installation waste and end of life waste can be fed into incineration processes. Incineration processes include cogeneration processes which give thermal and power energy as outputs. It is assumed that this recovered energy offsets that produced by the European average grid mix and thermal energy generation from natural gas.

Description of the allocation processes in the LCA report

The description of allocation rules in of this LCA report meets the requirements of the PCR.

Description of the unit processes in the LCA report

The modeling of the unit processes reported for the LCA are documented in a transparent way, respecting the confidentiality of the data present in the LCA report.

In the following tables the type and amount of the different input and output flows are listed for 1m² produced flooring; installed flooring includes the material loss during installation (4%):

Table 2: Composition of Westbond N9000 Carpet Tile

Process data	Unit	Westbond N9000 Carpet Tile
Nylon 6.6	kg/m2	0.95
Glass Tissue	kg/m2	0.06
DINP	kg/m2	0.25
Mixed vinyl waste	kg/m2	1.70
PVC	kg/m2	0.59
Aluminium hydroxide	kg/m2	0.24
Calcium carbonate	kg/m2	0.15
Antistatic agent	kg/m2	0.05
Various chemicals	kg/m2	0.008

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Table 3: Production related inputs/outputs

Process data	Unit	Westbond N9000 Carpet Tile
INPUTS		
Westbond N9000 Carpet Tile	kg	4.68
Electricity	MJ	9.04
Thermal energy from N9000 gas	MJ	9.91
OUTPUTS		
Westbond N9000 Carpet Tile	kg	4.00
Waste	kg	0.68

Table 4: Packaging requirements (per m² manufactured product)

Process data	Unit	Westbond N9000 Carpet Tile
Polyethylene film	kg	0.0023
Corrugated board	kg	0.142
Wooden pallets	kg	0.111

Table 5: Transport distances (same for both products)

Process data	Unit	Road	Truck size	Ship
Polyamide 6 Yarn	km	30	14 - 20t gross	-
PVC waste for recovery	km	90	weight / 11,4t	-
Calcium carbonate	km	75	payload capacity	-
DINP	km	70		-
PVC	km	15		170
Alumina trihydrate	km	100		-
Additives	km	15		-
Glass tissue	km	650		1360
Corrugated board	km	250		-
Wooden pallets	km	180		-
Polyethylene film	km	75		-
Transport to construction site :				
-Transport distance 40 t truck	km	290	34 - 40 t gross	-
-Transport distance 7.5 t truck	km	84	weight / 27t	
			payload capacity	
			7,5 t - 12t gross	-
Waste transport to incineration	km	200	weight / 5t payload	
			capacity	

Table 6: Inputs/outputs from Installation

Process data	Unit	Westbond N9000 Carpet Tile
INPUTS	•	
Westbond N9000 Carpet Tile	kg	4.00
Adhesive (30% water content)	kg	0.25
o Water		
 Acrylate co-polymer 		
 Styrene Butadiene co-polymer 		
 Limestone flour 		
o Sand		
OUTPUTS		
Installed Westbond N9000 Carpet Tile	kg	3.84
Installation Waste	kg	0.16

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Table 7: Inputs from use stage (per m².year of installed product)

Process data	Unit	Westbond N9000 Carpet Tile
Detergent	kg/year	0.003
Electricity	kWh/year	1.920
Water	kg/year	0.248

Table 8: DisposalProcess dataUnitWestbond N9000 Carpet TilePost-consumer Westbond N9000 Carpet Tile to incineration%100

Life Cycle Inventory Analysis

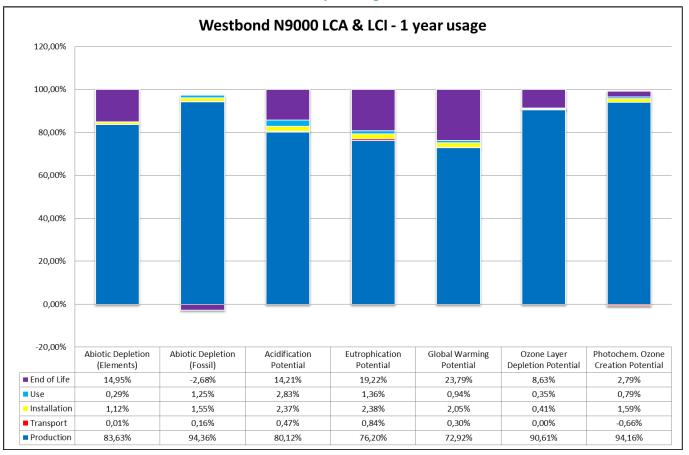
Environment

In table 9 the environmental impacts for one lifecycle are presented for Westbond N9000 Carpet Tile . In table 10 the environmental impacts are presented for all the lifecycle stages.

Table 9: Results of the LCA – Environmental impacts one lifecycle (one year) – Westbond N9000 Carpet Tile

Impact Category : CML 2001 – Nov. 2010	Westbond N9000 Carpet Tile	Unit
Global Warming Potential (GWP 100 years)	3.43E+01	kg CO2-Equiv.
Ozone Layer Depletion Potential (ODP. steady state)	6.55E-07	kg R11-Equiv.
Acidification Potential (AP)	4.76E-02	kg SO2-Equiv.
Eutrophication Potential (EP)	6.07E-03	kg Phosphate-Equiv.
Photochem. Ozone Creation Potential (POCP)	1.14E-02	kg Ethene-Equiv.
Abiotic Depletion Potential Elements (ADPE)	2.16E-05	kg Sb-Equiv.
Abiotic Depletion Potential Fossil (ADPF)	4.37E+02	[MJ]

Table 10: Results of the LCA – Environmental impact for Westbond N9000 Carpet Tile (one year)


Impact Category : CML 2001 – Nov. 2010	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Global Warming Potential	kg CO2-Equiv.	2.50E+01	1.02E-01	7.03E-01	3.22E-01	8.15E+00
Ozone Layer Depletion Potential	kg R11-Equiv.	5.94E-07	9.31E-13	2.67E-09	2.30E-09	5.66E-08
Acidification Potential	kg SO2-Equiv.	3.81E-02	2.22E-04	1.13E-03	1.35E-03	6.76E-03
Eutrophication Potential	kg PSO4-Equiv.	4.63E-03	5.07E-05	1.44E-04	8.29E-05	1.17E-03
Photochem. Ozone Creation Potential	kg Ethene- Equiv.	1.09E-02	-7.67E-05	1.84E-04	9.17E-05	3.24E-04
Abiotic Depletion Elements	kg Sb-Equiv.	1.81E-05	1.99E-09	2.42E-07	6.36E-08	3.23E-06
Abiotic Depletion Fossil	MJ	4.35E+02	7.38E-01	7.16E+00	5.78E+00	- 1.23E+01

The relative contribution of each process stage to each impact category for Westbond N9000 Carpet Tile is shown in figures 4.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Figure 4: Relative contribution of each process stage to each impact category for Westbond N9000 Carpet Tile for a one year usage.

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In all of the impact categories the production stage has the main contribution to the overall impact with the raw material supply as the key contributor with a share of 95 – 99%, except for POCP where the raw materials account for 57% of the total. In all cases this contribution is caused by the manufacturing of Polyamide 6, PVC and to a lesser extent DINP. For POCP the share of the Forbo manufacturing stage is 43%, caused by the use of energy during the manufacturing of Westbond N9000.

The transport, installation and use phase are contribute little to the overall impact, for all categories every single measurement is to a greater or lesser extent below 3%.

Except for ADPF every category has got a significant share in the impacts at the End of Life stage. This is caused by the incineration of 100% of the deconstructed floor that is considered in the calculations. For ADPF there is a credit for the waste to energy conversion.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Additional Environmental Information

To be fully transparant Forbo Flooring does not only want to declare the environmental impacts required in the PCR, but also the impacts on human health and eco-toxicity. Furthermore the outcome of the calculations according to the european Standard EN15804 are published in this section.

Toxicity

For this calculations the USEtoxTM model is used as being the globally recommended preferred model for characterization modeling of human and eco-toxic impacts in LCIA by the United Nations Environment Programme SETAC Life Cycle Initiative.

According to the "ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European context" the recommended characterization models and associated characterization factors are classified according to their quality into three levels:

- o Level I (recommended and satisfactory),
- o Level II (recommended but in need of some improvements)
- Level III (recommended, but to be applied with caution).

A mixed classification sometimes is related to the application of the classified method to different types of substances. USEtoxTM is classified as Level II / III, unlike for example the CML impact categories which are classified as Level I.

Table 11: Results of the LCA – Environmental impacts one lifecycle (one year) – Westbond N9000 Carpet Tile

Impact Category : USEtox	Westbond N9000 Carpet Tile	Unit
Eco toxicity	6.01E-01	PAF m3.day
Human toxicity, cancer	9.01E-09	Cases
Human toxicity, non-canc.	4.92E-07	Cases

In the following table the impacts are subdivided into the lifecycle stages.

Table 12: Results of the LCA – Environmental impact for Westbond N9000 Carpet Tile (one year)

Impact Category : USEtox	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Eco toxicity	PAF m3.day	5.18E-01	6.66E-03	1.09E-02	2.78E-02	3.76E-02
Human toxicity, cancer	cases	7.97E-09	2.78E-11	1.75E-10	2.66E-10	5.72E-10
Human toxicity, non-canc.	cases	3.24E-07	1.30E-08	1.75E-08	5.50E-08	8.22E-08

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

All the Toxicity categories are dominated by the production stage in which the raw materials are having a big impact with a share of around 93-99%. The raw materials with the highest impact are Polyamide 6 and PVC.

The transport and installation stage are both having a minor impact on the total impact compared to the other life cycle stages. For the transport life cycle the contribution comes completely from the Diesel that is used for the trucks. In the installation stage the adhesive is the main contributor.

The use stage is contributing 3 - 11% of the total, mainly caused by the use of electricity needed for vacuuming the floor. The cleaning regime considered in the calculation is an assumption, in practice this will be dependent on the use of the premises where the floor covering is installed.

At the End of Life stage the main contributor is the 100% of the floor that is incinerated after it is deconstructed. The possibility to recycle the post-consumer waste is not taken into account for these calculations, because this is not yet widely practiced.

Westbond N9000 Carpet Tile Textile Floor Covering

EN15804 results

In this section the calculations have been conducted according to the requirements of the European Standard EN 158024 following the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report".

Table 13: Results of the LCA – Environmental impact for Westbond	I N9000 Car	pet Tile	(one yea	ır)
--	-------------	----------	----------	-----

		Manufacturing	Installation		Use (1yr)	End of Life			Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	D
GWP	[kg CO ₂ -Equiv.]	2.50E+01	1.02E-01	8.07E-01	3.22E-01	0.00E+00	1.09E-01	9.77E+00	-1.83E+00
ODP	[kg CFC11-Equiv.]	5.94E-07	9.31E-13	2.69E-09	2.30E-09	0.00E+00	1.90E-12	5.68E-08	-2.78E-10
AP	[kg SO ₂ -Equiv.]	3.81E-02	2.22E-04	1.31E-03	1.35E-03	0.00E+00	5.46E-04	8.58E-03	-2.54E-03
EP	[kg PO ₄ ³⁻ - Equiv.]	4.63E-03	5.07E-05	1.59E-04	8.29E-05	0.00E+00	1.26E-04	1.26E-03	-2.30E-04
POCP	[kg Ethen Equiv.]	1.09E-02	-7.67E-05	2.02E-04	9.17E-05	0.00E+00	6.08E-05	5.45E-04	-3.00E-04
ADPE	[kg Sb Equiv.]	1.81E-05	1.99E-09	2.48E-07	6.36E-08	0.00E+00	4.05E-09	3.32E-06	-9.70E-08
ADPF	[MJ]	4.35E+02	7.38E-01	8.89E+00	5.78E+00	0.00E+00	1.51E+00	1.47E+01	-3.03E+01
	ming potential; ODP = Depletion								Formation

 Table 14: Results of the LCA – Resource use for Westbond N9000 Carpet Tile (one year)

		Manufacturing	Installation		Use (1yr)	End of Life				Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
PERE	[MJ]	-	-	-	-	-	-	-	-	-
PERM	[MJ]	-	-	-	-	-	-	-	-	-
PERT	[MJ]	8.46E+00	6.88E-02	1.67E-01	7.88E-01	4.24E-02	6.87E-02	2.44E-01	-8.31E-01	-8.31E-01
PENRE	[MJ]	-	-	-	-	-	-	-	-	-
PENRM	[MJ]	-	-	-	-	-	-	-	-	-
PENRT	[MJ]	4.71E+02	1.75E+00	8.42E+00	5.84E+00	2.55E-01	1.75E+00	1.40E+01	-2.73E+01	-2.73E+01
SM	[kg]	0.00E+00	-	-	-	-	-	-	-	-
RSF	[MJ]	1.61E-03	1.11E-05	2.22E-04	9.54E-05	5.20E-06	1.11E-05	0.00E+00	-3.04E-04	-3.04E-04
NRSF	[MJ]	1.68E-02	1.16E-04	1.48E-03	9.99E-04	5.45E-05	1.16E-04	0.00E+00	-3.19E-03	-3.19E-03
FW	[kg]	6.98E+01	7.63E-02	1.47E+00	5.28E+00	1.14E-01	7.62E-02	-1.64E+00	-2.58E+00	-2.58E+00
		primary energy excluding ren rimary energy resources: PEN								

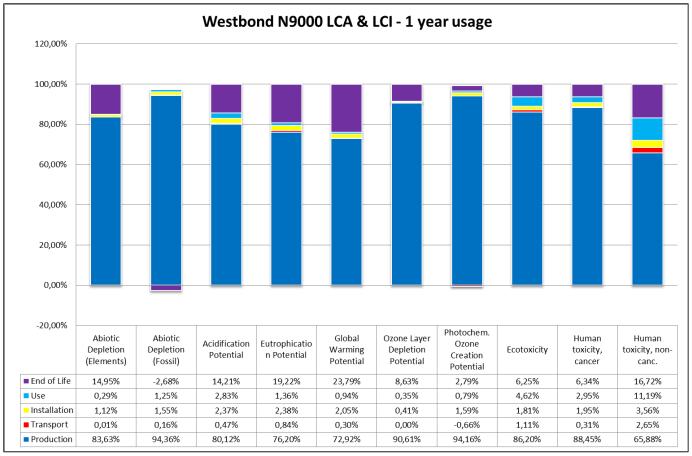
= Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRH = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of non-renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of non-renewable primary energy resources; SM = Use of secondary fuels; SM = Use of non-renewable primary energy resources; SM = Use of secondary fuels; SM = Use of non-renewable primary energy resources; SM = Use of

Table 15: Results of the LCA – Output flows and Waste categories for Westbond N9000 Carpet Tile (one year)

		Manufacturing	Transport	Installation	Use (1yr)	End of Life/credits				
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
HWD	[kg]	1.29E-03	0.00E+00	1.01E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	2.55E+01	2.63E-03	4.57E-01	1.12E+00	0.00E+00	5.36E-03	3.18E+00	-1.22E+00	-1.14E+00
RWD	[kg]	9.40E-03	1.03E-06	1.29E-04	7.12E-04	0.00E+00	2.09E-06	7.12E-04	-7.85E-04	7.31E-04
CRU	[kg]	-	-	-	-	-	-	-	-	-
MFR	[kg]	-	-	-	-	-	-	-	-	-
MER	[kg]	-	-	-	-	-	-	4.09E+00	-	-
EE Power	[MJ]	-	-	1.16E-01	-	-	-	2.78E+00	-	-
EE Thermal energy	[MJ]	-	-	1.43E+00	-	-	-	3.42E+01	-	-
HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy per energy carrier										

Interpretation

The interpretation of the environmental impacts calculated according to EN 15804 are similar to the interpretation according to ISO 14025. A more detailed interpretation for a one year useage is presented in following figures and tables.



Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Figure 5: Relative contribution of each process stage to each impact category for Westbond N9000 Carpet Tile for a one year usage.

Table 16: Main modules and flows contributing to the total impact in each impact category for Westbond N9000 Carpet Tile for a one year usage

Impact Category	Stage	Module		Main contributor	Main contributing flows
GWP		Raw Material Extraction	23.7 kg CO ₂ - equiv.	Polyamide (19.7 kg CO ₂ -eq.) PVC (2.7 kg Co ₂ -eg.)	
	Production	Transport of Raw materials	0.028 kg CO ₂ - equiv.	Means of transport (truck, container ship) and their fuels	Production : Inorganic emissions to air, Carbon dioxide
		Manufacturing	1.24 kg CO ₂ - equiv.	39% Thermal energy 58% Non-hazardous waste	
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Inorganic emissions
	Installation	Installation		74% Adhesive	to air, Carbon dioxide
	Use	Use		82% Electricity	Use : Inorganic emissions to air, Carbon dioxide
	EOL	EOL		Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Inorganic emissions to air, Carbon dioxide
ODP		Raw Material Extraction	99%	99% Polyamide	Production : Halogenated organic emissions
	Production	Transport of Raw materials	< 0.01%	Means of transport (truck, container ship) and their fuels	to air, R11 (trichlorofluoromethane), R114 (Dichlorotetrafluorethane), R12 (Dichlorodifluoromethane)
		Manufacturing	1%	33% Cardboard packaging 67% Non-hazardous waste	
	Transport	Transport Gate		Means of transport (truck,	Transport & Installation : Halogenetet

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Impact Category	Stage	Module to User		Main contributor	Main contributing flows	
Category				container ship) and their fuels	organic emissions to air, R11	
	Installation	Installation		58% Disposal of Carpet installation waste 41% Adhesive	(trichlorofluoromethane), R114 (Dichlorotetrafluorethane)	
	Use	Use		90% Detergent	Use : Halogenated organic emissions to air, R11 (trichlorofluoromethane), R114 (Dichlorotetrafluorethane)	
	EOL	EOL		Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL: Halogenated organic emissions to air, R11 (trichlorofluoromethane), R114 (Dichlorotetrafluorethane), R12 (Dichlorodifluoromethane)	
	Production	Raw Material Extraction	98%	80% Polyamide 13% PVC	Production : Inorganic emissions to air, NO _x	
		Transport of Raw materials	<0.5%	Means of transport (truck, container ship) and their fuels	and Sulphur dioxide	
		Manufacturing	2%	12% Cardboard packaging 85% Non-hazardous waste		
AP	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Inorganic emissions to air, NO _x and Sulphur dioxide	
	Installation	Installation		93% Adhesive		
	Use	Use		93% Electricity	Use : Inorganic emissions to air, NO _x and Sulphur dioxide	
	EOL	EOL		Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Inorganic emissions to air, Hydrogen chloride, NO_x and Sulphur dioxide	
		Raw Material	97%	81% Polyamide	Production : Inorganic emissions to air,	
	Production	Extraction Transport of Raw	0.5%	13% PVC Means of transport (truck,	Ammonia, NO _x Production : Inorganic emissions to fresh	
		materials		container ship) and their fuels	water, Ammonium/Ammonia, Nitrate	
		Manufacturing 2.5%		85% Non-hazardous waste		
EP	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Inorganic emissions to air, NO _x	
	Installation	Installation		90% Adhesive		
	Use	Use		80% Electricity	Use : Inorganic emissions to air, NO _x	
	EOL	EOL		Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Inorganic emissions to air, NO _x and Ammonia	
	Decidentian	Raw Material Extraction	57%	58% Polyamide 23% PVC 18% DINP	Production : Inorganic emissions to air, Carbon monoxide, NO _x , Sulphur dioxide	
	Production	Transport of Raw materials	< 0.2%	Means of transport (truck, container ship) and their fuels	Production : Halogenated organic emissions to air, Butane (n-butane), NMVOC	
		Manufacturing 43%		52% Thermal energy 47% Electricity	(Unspecified), VOC (Unspecified)	
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Inorganic emissions to air, Carbon monoxide, NO _x , Sulphur	
POCP	Installation	Installation		94% Adhesive	dioxide Transport & Installation : Halogenated organic emissions to air, NMVOC (Unspecified)	
	Use	Use		81% electricity	Use : Inorganic emissions to air, Sulphur dioxide, NO _x Use : Halogenated organic emissions to air, NMVOC (Unspecified)	
	EOL	EOL		Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Inorganic emissions to air, Carbon monoxide , NO _x , Sulphur dioxide EOL : Organic emissions to air (Group VOC), NMVOC (Unspecified)	
ADPe	Production	Raw Material Extraction98%Transport of Raw materials<0,1%		48% Polyamide 50% PVC	Production : Nonrenewable resources, Sodium chloride (Rock salt), Lead-Zinc ore	
				Means of transport (truck, container ship) and their fuels	(4.6%-0.6%)	
ADPe						
ADPe			2%	94% Non-hazardous waste		
ADPe	Transport	Manufacturing Transport Gate to User	2%	94% Non-hazardous waste Means of transport (truck, container ship) and their fuels	Transport & Installation : Nonrenewable	

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

(UL

Impact Category	Stage	Module		Main contributor	Main contributing flows
	Use Use			57% Electricity 43% Detergent	Use : Nonrenewable elements, Chromium, Copper, Gold, Lead, Molybdenum Use : Nonrenewable resources, Sodium chloride (rock salt)
EOL EOL			Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Nonrenewable resources, Magnesium chloride leach (40%)	
	Production	Raw Material Extraction	98%	77% Polyamide 14% PVC 9% DINP	Production : Crude oil resource, Crude oil (in MJ)
		Transport of Raw materials	<0.2%	Means of transport (truck, container ship) and their fuels	 Production : Natural gas (resource), Natural gas (in MJ)
ADPf	Transport	Manufacturing 2% Transport Gate to User		84% Thermal energy Means of transport (truck, container ship) and their fuels	Transport & Installation : Crude oil (resource) Transport & Installation : Natural gas
	Installation	Installation		97% Adhesive	(resource),
	Use	Use		81% electricity	Use : Hard coal (resource), Natural gas (resource), Uranium (resource)
	EOL	EOL		Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Natural gas (resource)
	Production	Raw Material Extraction Transport of Raw	97% 1%	70% Polyamide 23% PVC Means of transport (truck,	Production : Heavy metals to air, Copper (+II), Zinc (+II), Nickel (+II), Arsenic (+V) Production : Heavy metals to agricultural soil,
Eco toxicity		materials Manufacturing	2%	container ship) and their fuels 42% Cardboard packaging 49% Non-hazardous waste	Copper (+II), Zinc (+II) Production : Heavy metals to fresh water, Copper (+II), Zinc (+II), Nickel (+II), Arsenic (+V)
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & installation : Heavy metals to fresh water, Copper (+II), Nickel (+II), Zinc
	Installation	Installation		88% Adhesive	(+II) Transport & installation : Heavy metals to agricultural soil, Zinc (+II), Copper (+II)
	Use	Use		93% Electricity	Use : Heavy metals to agricultural soil, Copper (+II), Zinc (+II)
	EOL	EOL		Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Heavy metals to air, Copper (+II), Zinc (+II) EOL : Heavy metals to agricultural soil, Mercury (+II), Zinc (+II) EOL : Heavy metals to fresh water, Copper (+II), Zinc (+II), Arsenic (+V)
	Production	Raw Material Extraction	99%	43% Polyamide 54% PVC	Production : Heavy metals to air, Mercury (+II)
Human toxicity,		Transport of Raw materials	< 0.3%	Means of transport (truck, container ship) and their fuels	Production : Organic emissions to air, Formaldehyde (methanol), Vinyl chloride (VCM, chloroethene)
		Manufacturing	1%	27% Thermal energy 66% Non-hazardous waste	Production : Heavy metals to fresh water, Chromium (+VI), Arsenic (+V), Nickel (+II)
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Heavy metals to air, Mercury (+II)
cancer	Installation	Installation		97% adhesive	Transport & Installation : Heavy metals to fresh water, Chromium (+IV)
	Use	Use		85% Electricity	Use : Heavy metals to air, Mercury (+II) Use : Heavy metals to agricultural soil, Mercury (+II)
	EOL	EOL		Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Heavy metals to air, Mercury (+II) EOL : Heavy metals to agricultural soil, Mercury (+II), Lead (+II)
	Production	Raw Material Extraction 93%		46% Polyamide 48% PVC	Production : Heavy metals to air, Zinc (+II),
Human toxicity, non canc.		Transport of Raw materials	3%	Means of transport (truck, container ship) and their fuels	Mercury (+II) Production : Heavy metals to agricultural soil,
	_	Manufacturing 4%		22% Cardboard packaging 61% Non-hazardous waste	Zinc (+II), Lead (+II), Mercury (+II)
	Transport	Transport Gate		Means of transport (truck,	Transport & Installation : Heavy netals pair,

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

Impact Category	Stage	Module	Main contributor	Main contributing flows	
		to User	container ship) and their fuels	Mercury (+II)	
	Installation	Installation	88% adhesive	Transport & Installation : Heavy metals to agricultural soil, Lead (+II), Mercury (+II), Zinc (+II)	
	Use	Use	99% electricity	Use : Heavy metals to air, Mercury (+II), Zinc (+II) Use : Heavy metals to agricultural soil, Mercury (+II), Zinc (+II)	
	EOL	EOL	Incineration of post-consumer Westbond N9000 Carpet Tile Energy substitution from incineration	EOL : Heavy metals to agricultural soil, Lead (+II), Mercury (+II), Zinc (+II) EOL : Heavy metals to air, Mercury (+II)	

Description of Selected Impact Categories

Abiotic Depletion Potential

The abiotic depletion potential covers all natural resources such as metal containing ores, crude oil and mineral raw materials. Abiotic resources include all raw materials from non-living resources that are non-renewable. This impact category describes the reduction of the global amount of non-renewable raw materials. Non-renewable means a time frame of at least 500 years. This impact category covers an evaluation of the availability of natural elements in general, as well as the availability of fossil energy carriers.

ADP (elements) describes the quantity of non-energetic resources directly withdrawn from the geosphere. It reflects the scarcity of the materials in the geosphere and is expressed in Antimony equivalents. The characterization factors are published by the CML, Oers 2010.

Are fossil energy carriers included in the impact category, it is ADP (fossil). Fossil fuels are used similarly to the primary energy consumption; the unit is therefore also MJ. In contrast to the primary fossil energy ADP fossil does not contain uranium, because this does not count as a fossil fuel.

Primary energy consumption

Primary energy demand is often difficult to determine due to the various types of energy source. Primary energy demand is the quantity of energy directly withdrawn from the hydrosphere, atmosphere or geosphere or energy source without any anthropogenic change. For fossil fuels and uranium, this would be the amount of resource withdrawn expressed in its energy equivalent (i.e. the energy content of the raw material). For renewable resources, the energy-characterized amount of biomass consumed would be described. For hydropower, it would be based on the amount of energy that is gained from the change in the potential energy of water (i.e. from the height difference). As aggregated values, the following primary energies are designated:

The total **"Primary energy consumption non-renewable"**, given in MJ, essentially characterizes the gain from the energy sources natural gas, crude oil, lignite, coal and uranium. natural gas and crude oil will both be used for energy production and as material constituents e.g. in plastics. Coal will primarily be used for energy production. Uranium will only be used for electricity production in nuclear power stations.

The total **"Primary energy consumption renewable"**, given in MJ, is generally accounted separately and comprises hydropower, wind power, solar energy and biomass. It is important that the end energy (e.g. 1 kWh of electricity) and the primary energy used are not miscalculated with each other; otherwise the efficiency for production or supply of the end energy will not be accounted for. The energy content of the manufactured products will be considered as feedstock energy content. It will be characterized by the net calorific value of the product. It represents the still usable energy content.

Waste categories

There are various different qualities of waste. For example, waste can be classed according to German and European waste directives. The modeling principles have changed with the last GaBi4 database update in October 2006. Now all LCA data sets (electricity generation, raw material etc.) already contain the treatment of the waste with very low

Westbond N9000 Carpet Tile Textile Floor Covering

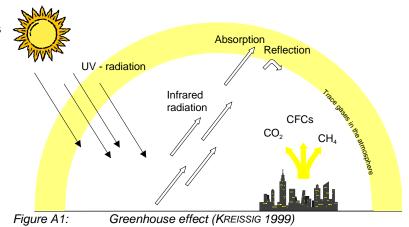
According to ISO 14025 & EN 15804

waste output at the end of the stage. So the amount of waste is predominantly caused by foreground processes during the production phase. This is important for the interpretation of waste amounts.

From a balancing point of view, it makes sense to divide waste into three categories. The categories overburden/tailings, industrial waste for municipal disposal and hazardous waste will be used.

Overburden / tailings in kg: This category consists of the layer which must be removed in order to access raw material extraction, ash and other raw material extraction conditional materials for disposal. Also included in this category are tailings such as inert rock, slag, red mud etc.

Industrial waste for municipal disposal in kg: This term contains the aggregated values of industrial waste for municipal waste according to 3. AbfVwV TA SiedIABf.


Hazardous waste in kg: This category includes materials that will be treated in a hazardous waste incinerator or hazardous waste landfill, such as painting sludge's, galvanic sludge's, filter dusts or other solid or liquid hazardous waste and radioactive waste from the operation of nuclear power plants and fuel rod production.

Global Warming Potential (GWP)

The mechanism of the greenhouse effect can be observed on a small scale, as the name suggests, in a greenhouse. These effects are also occurring on a global scale. The occurring short-wave radiation from the sun comes into contact with the earth's surface and is partly absorbed (leading to direct warming) and partly reflected as infrared radiation. The reflected part is absorbed by so-called greenhouse gases in the troposphere and is re-radiated in all directions, including back to earth. This results in a warming effect on the earth's surface.

In addition to the natural mechanism, the greenhouse effect is enhanced by human activities. Greenhouse gases that are considered to be caused, or increased, anthropogenically are, for example, carbon dioxide, methane and CFCs. *Figure A1* shows the main processes of the anthropogenic greenhouse effect. An analysis of the greenhouse effect should consider the possible long term global effects.

The global warming potential is calculated in carbon dioxide equivalents (CO_2 -Eq.). This means that the greenhouse potential of an emission is given in relation to CO_2 . Since the residence time of the gases in the atmosphere is incorporated into the calculation, a time range for the assessment must also be specified. A period of 100 years is customary.

Acidification Potential (AP)

The acidification of soils and waters predominantly occurs through the transformation of air pollutants into acids. This leads to a decrease in the pH-value of rainwater and fog from 5.6 to 4 and below. Sulphur dioxide and nitrogen oxide and their respective acids (H_2SO_4 and HNO_3) produce relevant contributions. This damages ecosystems, whereby forest dieback is the most well-known impact.

Acidification has direct and indirect damaging effects (such as nutrients being elutriated from soils or an increased solubility of metals into soils). But even buildings and building materials can be damaged. Examples include metals and N9000 stones which are corroded or disintegrated at an increased rate.

When analyzing acidification, it should be considered that although it is a global problem, the regional effects of acidification can vary. *Figure A2* displays the primary impact pathways of acidification.

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

The acidification potential is given in sulphur dioxide equivalents (SO2-Eq.). The acidification potential is described as the ability of certain substances to build and release H+ - ions. Certain emissions can also be considered to have an acidification potential, if the given S-, N- and halogen atoms are set in proportion to the molecular mass of the emission. The reference substance is sulphur dioxide.

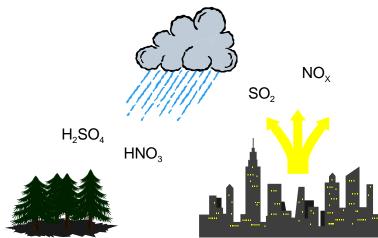
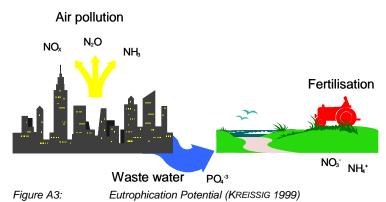


Figure A2:

Acidification Potential (KREISSIG 1999)


Eutrophication Potential (EP)

Eutrophication is the enrichment of nutrients in a certain place. Eutrophication can be aquatic or terrestrial. Air pollutants, waste water and fertilization in agriculture all contribute to eutrophication.

The result in water is an accelerated algae growth, which in turn, prevents sunlight from reaching the lower depths. This leads to a decrease in photosynthesis and less oxygen production. In addition, oxygen is needed for the decomposition of dead algae. Both effects cause a decreased oxygen concentration in the water, which can eventually lead to fish dying and to anaerobic decomposition (decomposition without the presence of oxygen). Hydrogen sulphide and methane are thereby produced. This can lead, among others, to the destruction of the ecosystem.

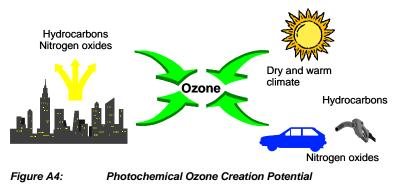
On eutrophicated soils, an increased susceptibility of plants to diseases and pests is often observed, as is a degradation of plant stability. If the nutrification level exceeds the amounts of nitrogen necessary for a maximum harvest, it can lead to an enrichment of nitrate. This can cause, by means of leaching, increased nitrate content in groundwater. Nitrate also ends up in drinking water.

Nitrate at low levels is harmless from a toxicological point of view. However, nitrite, a reaction product of nitrate, is toxic to humans. The causes of eutrophication are displayed in Figure A3. The eutrophication potential is calculated in phosphate equivalents (PO4-Eq). As with acidification potential, it's important to remember that the effects of eutrophication potential differ regionally.

Photochemical Ozone Creation Potential (POCP)

Despite playing a protective role in the stratosphere, at ground-level ozone is classified as a damaging trace gas. Photochemical ozone production in the troposphere, also known as summer smog, is suspected to damage vegetation and material. High concentrations of ozone are toxic to humans.

Radiation from the sun and the presence of nitrogen oxides and hydrocarbons incur complex chemical reactions, producing aggressive reaction products, one of which is ozone. Nitrogen oxides alone do not cause high ozone concentration levels. Hydrocarbon emissions occur from incomplete combustion, in conjunction with petrol (storage, turnover, refueling etc.) or from solvents. High concentrations of ozone arise when the temperature is high, burndity is



Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

low, when air is relatively static and when there are high concentrations of hydrocarbons. Today it is assumed that the existence of NO and CO reduces the accumulated ozone to NO_2 , CO_2 and O_2 . This means, that high concentrations of ozone do not often occur near hydrocarbon emission sources. Higher ozone concentrations more commonly arise in areas of clean air, such as forests, where there is less NO and CO (*Figure A4*).

In Life Cycle Assessments, photochemical ozone creation potential (POCP) is referred to in ethyleneequivalents (C_2H_4 -Äq.). When analyzing, it's important to remember that the actual ozone concentration is strongly influenced by the weather and by the characteristics of the local conditions.

Ozone Depletion Potential (ODP)

Environment

Ozone is created in the stratosphere by the disassociation of oxygen atoms that are exposed to short-wave UV-light. This leads to the formation of the so-called ozone layer in the stratosphere (15 - 50 km high). About 10 % of this ozone reaches the troposphere through mixing processes. In spite of its minimal concentration, the ozone layer is essential for life on earth. Ozone absorbs the short-wave UV-radiation and releases it in longer wavelengths. As a result, only a small part of the UV-radiation reaches the earth.

Anthropogenic emissions deplete ozone. This is well-known from reports on the hole in the ozone layer. The hole is currently confined to the region above Antarctica, however another ozone depletion can be identified, albeit not to the same extent, over the mid-latitudes (e.g. Europe). The substances which have a depleting effect on the ozone can essentially be divided into two groups; the fluorine-chlorine-hydrocarbons (CFCs) and the nitrogen oxides (NOX). *Figure A5* depicts the procedure of ozone depletion.

One effect of ozone depletion is the warming of the earth's surface. The sensitivity of humans, animals and plants to UV-B and UV-A radiation is of particular importance. Possible effects are changes in growth or a decrease in harvest crops (disruption of photosynthesis), indications of tumors (skin cancer and eye diseases) and decrease of sea plankton, which would strongly affect the food chain. In calculating the ozone depletion potential, the anthropogenically released halogenated hydrocarbons, which can destroy many ozone molecules, are recorded first. The so-called Ozone Depletion Potential (ODP) results from the calculation of the potential of different ozone relevant substances.

(UL)

Westbond N9000 Carpet Tile Textile Floor Covering

According to ISO 14025 & EN 15804

This is done by calculating, first of all, a scenario for a fixed quantity of emissions of a CFC reference (CFC 11). This results in an equilibrium state of total ozone reduction. The same scenario is considered for each substance under study whereby CFC 11 is replaced by the quantity of the substance. This leads to the ozone depletion potential for each respective substance, which is given in CFC 11 equivalents. An evaluation of the ozone depletion potential should take the long term, global and partly irreversible effects into consideration.

Figure A5:

Ozone Depletion Potential (KREISSIG 1999)

FLOORING SYSTEMS

Westbond N9000 Carpet Tile Textile Floor Covering

References

PE INTERNATIONAL AG; GaBi 5: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012. GaBi 5: Documentation of GaBi 5: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012. http://documentation.gabi-software.com/ Product Category Rule for Environmental Product Declarations *Flooring: Carpet, Resilient, Laminate, Ceramic, Wood* UL Environment's Program Operator Rules Final report: LCA, Environmental Information Sheet and Eco design Model of Resilient Flooring by order of ERFMI, PE International, 2008 PCR - Part A: Calculation rules for the Life Cycle Assessment and Requirements on the Background Report, Institut Bauen und Umwelt e.V. Description of Selected Impact Categories, PE International AG, 2012 European Commission - Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook GABI 5 2012 GABI 5 2012D NSF International May 22, 2012 UL ENVIRONMENT ERFMI 2008 IBU 2011 PE 2012 ILCD Handbook: General guide for Life Cycle Assessment -Sustainability: International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. First edition March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European Detailed guidance Union: 2010 STANDARDS AND LAWS Environmental management - Life cycle assessment - Requirements and guidelines (ISO 14044:2006); German and English version EN ISO 14044 DIN EN ISO 14025: Environmental labels and declarations — Type III **DIN EN ISO 14044** ISO 14025 2006 environmental declarations — Principles and procedures Environmental management - Life cycle assessment - Principles and framework ISO 14040 2006 (ISO 14040); German and English version EN ISO 14040 Sustainability of construction works - Environmental product declarations -Methodology for selection and use of generic data; German version CEN/TR CEN/TR 15941 EN 15804 EN 15804: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products Resilient floor coverings - Specification for plain and decorative Westbond N9000 ISO 24011 Carpet Tile REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonized conditions for the marketing of construction products and repealing Council Directive 89/106/EEC Resilient, textile and laminate floor coverings - Classification CPR EN-ISO 10874

According to ISO 14025 & EN 15804