

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the Declaration Forestia AS

Program operator The Norwegian EPD Foundation
Publisher The Norwegian EPD Foundation

Declaration number NEPD00274E
ECO EPD Ref. No. 00000145
Issue date 14.10.2014
Valid to 14.10.2019

Forestia particleboard

Forestia AS

www.epd-norge.no

General information

Product

Forestia particleboard

Program holder

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo

Phone: +47 23 08 82 92 e-mail: post@epd-norge.no

Declaration number:

NEPD00274E

This declaration is based on Product Category Rules:

CEN Standard EN 15804 serve as core PCR NPCR010 rev1 Building boards (12/2013)

Declared unit:

Production of 1 m³ particleboard (standard/ekstra)

Declared unit with option:

1 m³ particleboard (standard/ekstra) produced, installed and waste managed with an lifetime of 60 yrs.

Functional unit:

The EPD has been worked out by:

Lars G. F. Tellnes Norsk Treteknisk Institutt

Lass Milles Treteknisk

Verification:

Independent verification of data, other environmental information and EPD has been carried out in accordance with ISO14025, 8.1.3 and 8.1.4

externally <a>\textsize

internally 🔲

Christofer Skaar, PhD

(Independent verifier approved by EPD Norway)

Declared unit:

Production of 1 m3 particleboard (standard/ekstra)

Owner of the declaration

Forestia AS

Contact person: Hans Kristian Eig Phone: +47 62 42 82 00

e-mail: hans.kristian.eig@byggma.no

Manufacturer

Forestia AS

Damsvegen 31, NO-2435 Braskereidfoss

Norway

Place of production:

Braskereidfoss, Norway

Management system:

NS-EN ISO 9001:2008, NS-EN ISO 14001:2004, PEFC ST 2002:2013

Org. No:

NO 981 393 961 MVA

Issue date

14.10.2014

Valid to

14.10.2019

Comparability:

EPD of construction products may not be comparable if they do not comply with EN 15804 and are seen in a building context.

Year of study:

2013-2014

Approved

Dagfinn Malnes
Managing Director of EPD-Norway

Key environmental indicators	Unit	Cradle to gate A1 - A3
Global warming	kg CO ₂ -eqv	-861/-711†
Energy use	MJ	4861/6322
Dangerous substances	*	ı
Share of renewables in energy use	%	64/50
Indoor air classification (Rakennustieto)	M1/M2/M3	M1

Transport ****
3,5/3,7
61/64
-
1
-

Module
A4
33/35
571/601
-
2
-

[†] Includes sequestration of 1057 kg carbon dioxide during wood growth.

^{*} The product contains no substances from the REACH Candidate list or the Norwegian priority list

^{*****} Transport from production place to central storage in Norway. See additional Norwegian requirements p. 7.

Product

Product description:

Particleboard for load-bearing and non load-bearing application in buildings and furnitures according to classification requirements in NS-EN 312:2010: P1 - General purpose boards for use in dry conditions, P2 - Boards for interior fitments (including furniture) for use in dry conditions, P3 - Non load-bearing boards for use in humid conditions, P4 - Load-bearing boards for use dry conditions, P5 - Load-bearing boards for use in humid conditions, P6 - Heavy duty load-bearing boords for use dry conditions.

Technical data:

Density of 630-700 kg/m³, thickness 6-40 mm. Classification requirements in NS-EN 312:2010.

Product specification

Standard particleboard with sanded surface are used for flooring, walls, ceilings and furniture. Ekstra particleboards can be used in humid contidions for flooring, walls, ceilings, roofs and furniture.

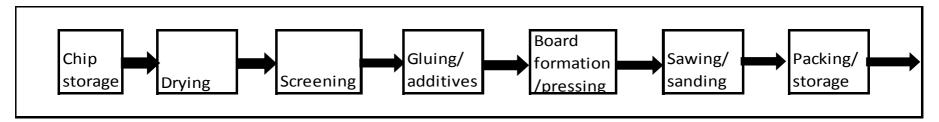
	Standard	Ekstra	
Materials	kg	kg	%
Wood	575,56	575,56	82-86
Glue	80,45	108,47	12-15
Wax	5,46	11,51	1,6
Ammonia solution	0,23	0,37	<1
Ammonium nitrate	3,44	4,43	<1
Urea	2,18	1,99	<1
Total	667	702	

Market:

Norway / Nordic / Europe. The scenarios beyond gate are based on the situation in the Norwegian market.

Reference service life:

The reference service life is the same as the building and is usually set to 60 years.


LCA: Calculation rules

Declared unit with option:

1 m3 particleboard (standard/ekstra) produced, installed and waste managed with an lifetime of 60 yrs.

System boundary:

Flow chart of the particleboard production is shown bellow. Modul D is calculated by energy substitution and is explained in the scenarios.

Data quality:

Data from production of particleboard is from the average in 2013. LCI- data from the production of glue is from the specific supplier and is based on the average in 2011. Upstream data and transport is from Ecoinvent v2.2 released in 2010, while waste treatment of particleboards are from data in ELCD 3.0, released in 2013.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

Allocation:

Allocation is done in accordance to NS-EN 15804:2012. In the production chain of wood, this is economic allocation and the values used are the default in Ecoinvent v2.2.

Beregning av biokarbon:

Sequestration and emissions of biogenic carbon is calculated in accordance to NS-EN 16449:2014. With an dry wood content of 576,4 kg per m³ particleboard, this gives 1057 kg CO₂ per m³ particleboard.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Al production are first transported to a building merchant or directly to larger projects. It is accounted in the scenario a distance of 250 km on large lorry and 50 km on a smaller lorry to the building site.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return)	Type of vehicle	Distance km	Fuel/Energy	Value	
	%			consumption)	(l/t)
Truck	75	Lorry, >32t, EURO4	250	0,026 I	/tkm	
Truck	39	Lorry, 3.5-7.5t, EURO4	50	0,11	/tkm	

It is assumed 1 MJ of electricity use on building site and that 10% of the particleboard is wasted.

Installation in the building (A5)

	Unit	Value
Auxiliary	kg	
Water consumption	m^3	
Electricity consumption	MJ	1
Other energy carriers	MJ	
Material loss	kg	66,7/70,2
Output materials from waste treatment	kg	
Dust in the air	kg	

Replacement (B4)/Refurbishment (B5)

	Unit	Value
Replacement cycle*	Yr	60
Electricity consumption	kWh	
Replacement of worn parts		

Number or RSL (Reference Service Life)

The transport of wood waste is based on average distance for Norway in 2007 and was 85 km. In addition, the share that is exported to Sweden is estimated to 67% by truck, 9% by rail and 24% by boat. The transport distances to Sweden are assumed to be 200 km by truck, 400 km by rail and 800 km by boat.

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return)	Type of vehicle	Distance km	Fuel/Energy	Value
Truck	50	Lorry, 20-28t	85	0,05 l/tkm	
Truck	75	Lorry, >32t	200	0,026 l/tkm	
Rail		Freight rail	400	0,239 MJ/tkm	
Boat	71	Barge	800	0,011 l/tkm	

The benefits beyond the life cycle is calculated by the sum of exported energy of the life cycle. For the share that is recovered in Norway, this is substitution of Norwegian electricity and district heating mixes and different types of industrial fuels. For the share that is exported to Sweden, generic data from ELCD 3.0 is used.

Benefits and loads beyond the system boundaries (D)

	Unit	Value
Standard particleboard		
Substitution of electric energy	MJ	919
Substitution of thermal energy	MJ	2780
Extra particleboard		
Substitution of electric energy	MJ	967,404
Substitution of thermal energy	MJ	2926

The particleboards are to be sorted as mixed wood waste at buildings site. The scenarioet for treatment of wood waste is based on the Norwegian waste accounts in 2011. Among the waste treatments used that year, it is assumed that only energy recovery, combustion without energy recovery and landfilling are practiced for post construction wood.

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	
Collected as mixed construction waste	kg	667/702
Reuse	kg	
Recycling	kg	
Energy recovery	kg	607/639
Combustion without energy recovery	kg	47/49
To landfill	kg	13/14

Additional technical information

Recalculations of the results from 1 m³ to per m² can be done by multiplying with actuall thickness of the board in meters.

LCA: Results

The results for global warming potential in A1-A3 have large contribution from the sequestration of 1057 kg carbon dioxide during wood growth, the same amount are counted as emitted during waste treatment in C3 and C4.

	System boundaries (X=included, MND=module not declared, MNR=module not relevant)																
Product stage Construction installation stage				Use stage						End of life stage				Beyond the system boundaries			
	Raw materials	Transport	Manufacturing	Transport	Construction installation stage	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	СЗ	C4	D
ſ	Х	Χ	Х	Х	Х	MND	MND	MND	MND	MND	MNR	MNR	Х	Χ	Χ	Χ	Х

Environme	ental impact	Standard boards P1, P2, P4 and P6									
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D		
GWP	kg CO ₂ -eqv	-8,61E+02	3,32E+01	2,69E+01	1,17E-02	1,85E+01	9,82E+02	9,70E+01	-2,71E+02		
ODP	kg CFC11-eqv	7,46E-06	5,27E-06	1,71E-06	1,04E-09	2,82E-06	1,42E-06	1,39E-07	-2,40E-05		
POCP	kg C ₂ H ₄ -eqv	4,58E-02	4,30E-03	7,20E-03	1,39E-06	3,17E-03	1,70E-02	1,73E-03	-7,70E-02		
AP	kg SO ₂ -eqv	9,72E-01	1,26E-01	1,52E-01	2,72E-05	9,97E-02	2,89E-01	2,92E-02	-1,54E+00		
EP	kg PO ₄ 3eqv	1,79E-01	3,48E-02	3,24E-02	1,43E-05	2,68E-02	7,62E-02	7,36E-03	-2,46E-02		
ADPM	kg Sb-eqv	2,47E-04	1,19E-04	3,75E-05	3,55E-08	4,01E-05	-2,77E-05	-2,93E-06	-5,40E-05		
ADPE	MJ	3,01E+03	4,95E+02	4,08E+02	1,56E-01	2,71E+02	2,75E+02	2,59E+01	-3,04E+03		

Environme	ental impact	Ekstra boa	ards P3 and						
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWP	kg CO ₂ -ekv	-7,11E+02	3,50E+01	4,23E+01	1,17E-02	1,95E+01	9,83E+02	9,71E+01	-2,85E+02
ODP	kg CFC11-ekv	8,35E-06	5,55E-06	1,85E-06	1,04E-09	2,96E-06	1,49E-06	1,46E-07	-2,53E-05
POCP	kg C ₂ H ₄ -ekv	7,02E-02	4,53E-03	9,77E-03	1,39E-06	3,33E-03	1,79E-02	1,83E-03	-8,10E-02
AP	kg SO ₂ -ekv	1,51E+00	1,33E-01	2,09E-01	2,72E-05	1,05E-01	3,04E-01	3,08E-02	-1,63E+00
EP	kg PO ₄ 3ekv	2,48E-01	3,67E-02	4,01E-02	1,43E-05	2,82E-02	8,02E-02	7,75E-03	-2,59E-02
ADPM	kg Sb-ekv	3,36E-04	1,25E-04	4,71E-05	3,55E-08	4,22E-05	-2,91E-05	-3,09E-06	-5,68E-05
ADPE	MJ	5,01E+03	5,21E+02	6,14E+02	1,56E-01	2,85E+02	2,90E+02	2,73E+01	-3,20E+03

GWP Global warming potential; **ODP** Depletion potential of the stratospheric ozone layer; **POCP** Formation potential of tropospheric photochemical oxidants; **AP** Acidification potential of land and water; **EP** Eutrophication potential; **ADPM** Abiotic depletion potential for non fossil resources; **ADPE** Abiotic depletion potential for fossil resources

Resource	use Stand	ard boards	P1, P2, P4	and P6					
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
RPEE	MJ	2,08E+03	8,94E+00	1,03E+03	1,04E+00	3,97E+00	7,38E+03	7,67E+02	-4,97E+03
RPEM	MJ	1,10E+04		2,19E+01			-9,97E+03	-7,67E+02	0,00E+00
TPE	MJ	1,30E+04	8,94E+00	1,05E+03	1,04E+00	3,97E+00	-2,58E+03	7,87E-01	-4,97E+03
NRPE	MJ	1,74E+03	5,62E+02	4,03E+02	2,16E-01	3,03E+02	1,29E+03	1,30E+02	-3,86E+03
NRPM	MJ	1,42E+03		2,85E+00			-1,30E+03	-9,97E+01	
TRPE	MJ	3,16E+03	5,62E+02	4,06E+02	2,16E-01	3,03E+02	-6,00E+00	3,08E+01	-3,86E+03
SM	kg								
RSF	MJ	1,04E+03		1,04E+02					
NRSF	MJ								
W	m ³	2,95E+02	5,15E+01	3,90E+01	3,70E-01	2,29E+01	1,57E+01	3,45E-01	-4,43E+02

Resource	use Ekstra	boards P3	3 and P5						
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
RPEE	MJ	2,15E+03	9,41E+00	1,03E+03	1,04E+00	4,18E+00	7,39E+03	7,67E+02	-5,23E+03
RPEM	MJ	1,10E+04		2,19E+01			-9,97E+03	-7,67E+02	
TPE	MJ	1,31E+04	9,41E+00	1,05E+03	1,04E+00	4,18E+00	-2,58E+03	8,28E-01	-5,23E+03
NRPE	MJ	3,13E+03	5,92E+02	5,85E+02	2,16E-01	3,19E+02	1,64E+03	1,67E+02	-4,06E+03
NRPM	MJ	2,08E+03		6,41E+01			-1,30E+03	-1,34E+02	
TRPE	MJ	5,21E+03	5,92E+02	6,49E+02	2,16E-01	3,19E+02	3,36E+02	3,24E+01	-4,06E+03
SM	kg								
RSF	MJ	1,04E+03		1,04E+02					
NRSF	MJ								
W	m ³	3,09E+02	5,42E+01	4,08E+01	3,70E-01	2,41E+01	1,65E+01	3,63E-01	-4,66E+02

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste Standard boards P1, P2, P4 and P6									
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
HW	kg	1,20E+00	1,48E-02	1,64E-01	6,00E-06	5,73E-03	3,75E-01	3,89E-02	-2,70E-02
NHW	kg	4,71E+01	3,71E+00	5,38E+00	9,81E-03	1,90E+00	9,84E-01	8,60E-02	-1,25E+01
RW	kg	1,41E-03	5,47E-04	6,29E-03	9,40E-07	2,55E-04	5,50E-02	5,70E-03	-3,27E-02

End of life	- Waste	Ekstra boards P3 and P5							
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
HW	kg	1,79E+00	1,56E-02	2,25E-01	6,00E-06	6,03E-03	3,94E-01	4,10E-02	-2,85E-02
NHW	kg	7,79E+01	3,90E+00	8,50E+00	9,81E-03	2,00E+00	1,04E+00	9,05E-02	-1,31E+01
RW	kg	1,53E-03	5,76E-04	6,63E-03	9,40E-07	2,68E-04	5,79E-02	6,00E-03	-3,44E-02

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow Standard boards P1, P2, P4 and P6									
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
CR	kg								
MR	kg			5,06E-01					
MER	kg			1,58E+01			1,58E+02		-1,74E+02
EEE	MJ			8,51E+01			8,51E+02		-9,19E+02
ETE	MJ			2,94E+02			2,94E+03		-2,78E+03

End of life - Output flow Ekstra boards P3 and P5									
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
CR	kg								
MR	kg			5,06E-01					
MER	kg			1,66E+01			1,66E+02		-1,83E+02
EEE	MJ			8,15E+01			8,15E+02		-9,67E+02
ETE	MJ			2,81E+02			2,81E+03		-2,93E+03

CR Components for reuse; **MR** Materials for recycling; **MER** Materials for energy recovery; **EEE** Exported electric energy; **ETE** Exported thermal energy

Reading example: $9.0 \text{ E}-03 = 9.0 \cdot 10^{-3} = 0.009$

Additional Norwegian requirements

Electricity

Norwegian consumption mix at medium voltage is used at the production site and is calculated based on the average for 2008-2010, with some adjustment to be equal to emission factors published by EPD-Norway.

Greenhouse gas emissions: 0,0117 kg CO₂ - eqv/MJ

Dangerous substances

None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (of 16.06.2014) or substances on the Norwegian Priority list (of 11.11.2013) or substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations.

Transport

Transport from production site to central warehouse in Norway is: 50 km
This transport scenario is not realistic, but is calculated based on requirements from EPD-Norway.

Indoor environment

The product meets the requirements for low emissions (M1) according to EN15251: 2007 Appendix E.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2006	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Tellnes, L. G. F.	LCA-report for Forestia AS. LCA-report nr. 321133-1 from Norwegian Institute of Wood Technology, Oslo, Norway.
NPCR010 rev.1	Product category rules for building boards, rev1, December 2013
NS-EN 16485:2014	Round and sawn timber - Environmental Product Declaration - Product category rules for wood and wood-based products for use in construction
NS-EN 16449:2014	Wood and wood-based products - Calculation of the biogenic carbon content of wood and conversion to carbon dioxide
Rakennustieto	Emission Classification of Building Materials. Forestia AS classification document valid until 19.6.2016. The Building Information Foundation RTS (Rakennustieto). Helsinki, Finland.

	Program holder and publisher	Phone:	+47 23 08 82 92
epa-norge.no	The Norwegian EPD Foundation		
epd-norge.no The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
	Norway	web	www.epd-norge.no
**	Owner of the declaration	Phone:	+47 62 42 82 00
FORESTIA	Forestia AS	Fax	+47 62 42 38 81
FURESTIA	Damsvegen 31, NO-2435 Braskereidfoss	e-mail:	forestia@byggma.no
	Norway	web	www.forestia.no
	Author of the Life Cycle Assessment	Phone:	+47 98 85 33 33
Trotoknick 3	Lars G. F. Tellnes	Fax	
Treteknisk (3)	Norsk Treteknisk Institutt	e-mail:	firmapost@treteknisk.no
	PB 113 Blindern, NO-0314, Oslo, Norway	web	www.treteknisk.no