
Flat slabs.

Cost-effective solution.

Punching of flat slabs

The shear force capacity of flat slabs at the column connection is very limited. High loads can occur to a fatal punching failure. This can be avoided by Schöck Bole.

Information flag

At the first flag with exact description of the element.

To overcome the well-known danger of punching failure in flat slabs and foundations, the Schöck Bole system offers a very flexible solution. The combination of high planning reliability and user friendly installation enables the system to play a critical role in the reliable and economical stud rail concreting system.

None load-bearing weld

The studs are only weld on spacer bars in order to ensure the distances.

Perfect anchoring

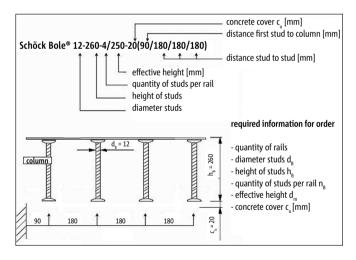
Due to forged double head with 3-times the diameter from the bars.

Tested and approved by different Institutes e.g.

- University Cottbus
- University Stuttgart
- wide variety of tests in our own laboratory

Simple installation

The subsequent installation through the upper reinforcement layer is possible without problem



Bole Standard, Bole U

Schöck Bole. **Basic specifications.**

Stud	Stud diameter ø mm*						
height**	10	12	14	16	20	25	
130	х	х	_	_	_	_	
140	х	х	_	_	_	_	
150	x	х	_	_	_	_	
160	x	x	x	х	_	_	
170	x	x	х	х	_	_	
180	х	х	х	Х	_	_	
190	х	х	х	х	х	х	
200	x	x	x	х	х	x	
210	х	х	х	х	х	х	
220	х	х	х	х	х	х	
230	х	х	х	х	х	х	
240	х	х	х	х	х	х	
250	х	х	х	х	х	х	
260	x	x	х	х	х	х	
270	х	x	х	х	х	х	
280	x	x	х	х	х	х	
290	х	х	х	х	х	х	
300	х	х	х	х	х	х	
310	_	_	х	х	х	х	
320	_	_	х	х	х	х	
330	_	_	х	х	х	х	
340	_	_	х	Х	х	х	
350	_	_	х	х	х	х	
360	_	_	х	х	х	Х	
370	_	_	х	Х	х	х	
380	_	_	х	Х	х	Х	
390	_	_	х	х	х	х	
400	_	_	х	х	х	х	

Stud	Head	Stud	Bearing	Stud
diameter	diameter	cross	capacity	height
		section		
d _B	d _K	$A_{_{\rm B}}$	(A*fyd)	$h_{_{\rm B}}$
[mm]	[mm]	[mm²]	[kN]	[mm]
10	30	79	34.1	
12	36	113	49.2	$h_B = h - c_o - c_u$
14	42	154	67.0	
16	48	201	87.5	h: slab thickness
20	60	314	136.7	c _o : concrete cover c _o
25	75	491	213.7	c _u : concrete cover c _u

HauCon Norge AS Snarøyveien 67 Hangar 2 Koksa 1367 Snarøya Tel: +47 67 11 56 90 Fax: +47 67 11 56 91 post@haucon.no

^{*} yield strength 500 MPa, tensile strength 550 MPa ** other stud heights are available on request